The Intra-Americas Springtime Sea Surface Temperature Anomaly Dipole as Fingerprint of Remote Influences

2010 ◽  
Vol 23 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Ernesto Muñoz ◽  
Chunzai Wang ◽  
David Enfield

Abstract The influence of teleconnections on the Intra-Americas Sea (IAS; Gulf of Mexico and Caribbean Sea) has been mostly analyzed from the perspective of El Niño–Southern Oscillation (ENSO) on the Caribbean Sea (the latter being an extension of the tropical North Atlantic). This emphasis has overlooked both 1) the influence of other teleconnections on the IAS and 2) which teleconnections affect the Gulf of Mexico climate variability. In this study the different fingerprints that major teleconnection patterns have on the IAS during boreal spring are analyzed. Indices of teleconnection patterns are regressed and correlated to observations of oceanic temperature and atmospheric data from reanalyses and observational datasets. It is found that the Pacific teleconnection patterns that influence the IAS SSTs do so by affecting the Gulf of Mexico in an opposite manner to the Caribbean Sea. These analyzed Pacific climate patterns are the Pacific–North American (PNA) teleconnection, the Pacific decadal oscillation (PDO), and ENSO. The North Atlantic Oscillation (NAO) is related to a lesser degree with the north–south SST anomaly dipole than are Pacific teleconnection patterns. It is also found that the IAS influence from the midlatitude Pacific mostly affects the Gulf of Mexico, whereas the influence from the tropical Pacific mostly affects the Caribbean Sea. Therefore, the combination of a warm ENSO event and a positive PNA event induces a strong IAS SST anomaly dipole between the Gulf of Mexico and the Caribbean Sea during spring. By calculating an index that represents the IAS SST anomaly dipole, it is found that the dipole forms mostly in response to changes in the air–sea heat fluxes. In the Gulf of Mexico the dominant mechanisms are the air–sea differences in humidity and temperature. The changes in shortwave radiation also contribute to the dipole of net air–sea heat flux. The changes in shortwave radiation arise, in part, by the cloudiness triggered by the air–sea differences in humidity, and also by the changes in the convection cell that connects the Amazon basin to the IAS. Weaker Amazon convection (e.g., in the event of a warm ENSO event) reduces the subsidence over the IAS, and henceforth the IAS cloudiness increases (and the shortwave radiation decreases). This study contributes to a greater understanding of how the IAS is influenced by different Pacific and Atlantic teleconnections.

2017 ◽  
Author(s):  
Berenice Rojo-Garibaldi ◽  
David Alberto Salas-de-León ◽  
María Adela Monreal-Gómez ◽  
Norma Leticia Sánchez-Santillán ◽  
David Salas-Monreal

Abstract. Hurricanes are complex systems that carry large amounts of energy. Their impact produces, the majority of the time, natural disasters involving the loss of human lives and of materials and infrastructure in billions of US dollars. However, not everything is negative, as hurricanes are the main source of rainwater for the regions where they develop. In this study, we perform a nonlinear analysis of the time series obtained from 1749 to 2012 of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea. The construction of the hurricane time series was carried out based on the hurricane database of The North Atlantic-basin Hurricane Database (HURDAT), and the published historical information. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the time-series’ spectral analysis along with the nonlinear analysis of the hurricanes time series showed chaotic edge behavior. One possible explanation for this edge is the individual chaotic behavior of hurricanes, either by category or individually, regardless of their category, and their behavior on a regular basis.


2018 ◽  
Vol 25 (2) ◽  
pp. 291-300 ◽  
Author(s):  
Berenice Rojo-Garibaldi ◽  
David Alberto Salas-de-León ◽  
María Adela Monreal-Gómez ◽  
Norma Leticia Sánchez-Santillán ◽  
David Salas-Monreal

Abstract. Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT) and the published historical information. The hurricane time series provides a unique historical record on information about ocean–atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.


Zootaxa ◽  
2012 ◽  
Vol 3210 (1) ◽  
pp. 50 ◽  
Author(s):  
CLARA MARÍA HEREU ◽  
EDUARDO SUÁREZ-MORALES

In waters of the Northwestern Atlantic pelagic tunicates may contribute significantly to the plankton biomass; however, theregional information on the salp fauna is scarce and limited to restricted sectors. In the Caribbean Sea (CS) and the Gulf ofMexico (GOM) the composition of the salpid fauna is still poorly known and this group remains among the less studiedzooplankton taxa in the Northwestern Tropical Atlantic. A revised checklist of the salp species recorded in the North At-lantic (NA, 0–40° N) is provided herein, including new information from the Western Caribbean. Zooplankton sampleswere collected during two cruises (March 2006, January 2007) within a depth range of 0–941 m. A total of 14 species wererecorded in our samples, including new records for the CS and GOM area (Cyclosalpa bakeri Ritter 1905), for the CS (Cy-closalpa affinis (Chamisso, 1819)), and for the Western Caribbean (Salpa maxima Forskål, 1774). The number of speciesof salps known from the CS and GOM rose to 18. A key for the identification of the species recorded in the region is provided. Studies on the ecological role of salps in several sectors of the NA are scarce and deserve further attention.


2018 ◽  
Vol 168 ◽  
pp. 296-309 ◽  
Author(s):  
M. Casanova-Masjoan ◽  
T.M. Joyce ◽  
M.D. Pérez-Hernández ◽  
P. Vélez-Belchí ◽  
A. Hernández-Guerra

2007 ◽  
Vol 20 (20) ◽  
pp. 5021-5040 ◽  
Author(s):  
Chunzai Wang ◽  
Sang-ki Lee ◽  
David B. Enfield

Abstract The Atlantic warm pool (AWP) is a large body of warm water that comprises the Gulf of Mexico, the Caribbean Sea, and the western tropical North Atlantic. Located to its northeastern side is the North Atlantic subtropical high (NASH), which produces the tropical easterly trade winds. The easterly trade winds carry moisture from the tropical North Atlantic into the Caribbean Sea, where the flow intensifies, forming the Caribbean low-level jet (CLLJ). The CLLJ then splits into two branches: one turning northward and connecting with the Great Plains low-level jet (GPLLJ), and the other continuing westward across Central America into the eastern North Pacific. The easterly CLLJ and its westward moisture transport are maximized in the summer and winter, whereas they are minimized in the fall and spring. This semiannual feature results from the semiannual variation of sea level pressure in the Caribbean region owing to the westward extension and eastward retreat of the NASH. The NCAR Community Atmospheric Model and observational data are used to investigate the impact of the climatological annual mean AWP on the summer climate of the Western Hemisphere. Two groups of the model ensemble runs with and without the AWP are performed and compared. The model results show that the effect of the AWP is to weaken the summertime NASH, especially at its southwestern edge. The AWP also strengthens the summertime continental low over the North American monsoon region. In response to these pressure changes, the CLLJ and its moisture transport are weakened, but its semiannual feature does not disappear. The weakening of the easterly CLLJ increases (decreases) moisture convergence to its upstream (downstream) and thus enhances (suppresses) rainfall in the Caribbean Sea (in the far eastern Pacific west of Central America). Model runs show that the AWP’s effect is to always weaken the southerly GPLLJ. However, the AWP strengthens the GPLLJ’s northward moisture transport in the summer because the AWP-induced increase of specific humidity overcomes the weakening of southerly wind, and vice versa in the fall. Finally, the AWP reduces the tropospheric vertical wind shear in the main development region that favors hurricane formation and development during August–October.


2007 ◽  
Vol 20 (9) ◽  
pp. 1910-1922 ◽  
Author(s):  
Alberto M. Mestas-Nuñez ◽  
David B. Enfield ◽  
Chidong Zhang

Abstract The seasonal and interannual variability of moisture transports over the Intra-Americas Sea (including the Gulf of Mexico and the Caribbean Sea) is evaluated using the NCEP–NCAR global reanalysis. The seasonal variability of these moisture transports is consistent with previous studies and shows distinctive winter and summer regimes. Boreal winter moisture is mainly delivered to the central United States from the Pacific with some contribution from the Gulf of Mexico. It is during the boreal summer that the moisture flow over the Intra-Americas Sea is most effective in supplying the water vapor to the central United States via the northern branch of the Caribbean low-level jet. The increase of intensity of this jet during July is associated with an increase in evaporation over the Intra-Americas Sea, consistent with midsummer drought conditions over this region. During both summer and winter, the interannual variability of the inflow of moisture from the Intra-Americas Sea into central United States is associated with Caribbean low-level jet variability. The source of the varying moisture is mainly the Gulf of Mexico and the North Atlantic area just east of the Bahamas Islands and the sink is precipitation over east-central United States. The main teleconnection pattern for these interannual variations appears to be the Pacific–North American, although in boreal winter ENSO and possibly the North Atlantic Oscillation may also play a role. During boreal summer, associations with ENSO mainly involve the zonal moisture exchange between the Intra-Americas Sea/tropical Atlantic and the tropical Pacific.


2019 ◽  
Vol 32 (14) ◽  
pp. 4263-4280 ◽  
Author(s):  
Geidy Rodriguez-Vera ◽  
Rosario Romero-Centeno ◽  
Christopher L. Castro ◽  
Víctor Mendoza Castro

Abstract This work describes dominant patterns of coupled interannual variability of the 10-m wind and sea surface temperature in the Caribbean Sea and the Gulf of Mexico (CS&GM) during the period 1982–2016. Using a canonical correlation analysis (CCA) between the monthly mean anomalies of these fields, four coupled variability modes are identified: the dipole (March–April), transition (May–June), interocean (July–October), and meridional-wind (November–February) modes. Results show that El Niño–Southern Oscillation (ENSO) influences almost all the CS&GM coupled modes, except the transition mode, and that the North Atlantic Oscillation (NAO) in February has a strong negative correlation with the dipole and transition modes. The antisymmetric relationships found between the dipole mode and the NAO and ENSO indices confirm previous evidence about the competing remote forcings of both teleconnection patterns on the tropical North Atlantic variability. Precipitation in the CS and adjacent oceanic and land areas is sensitive to the wind–SST coupled variability modes from June to October. These modes seem to be strongly related to the interannual variability of the midsummer drought and the meridional migration of the intertropical convergence zone in the eastern Pacific. These findings may eventually lead to improving seasonal predictability in the CS&GM and surrounding land areas.


2020 ◽  
Author(s):  
Geidy Rodríguez-Vera ◽  
Rosario Romero-Centeno ◽  
Christopher L. Castro ◽  
Víctor Mendoza Castro

<p>This work describes dominant patterns of coupled interannual variability of the 10-m wind and sea surface temperature in the Caribbean Sea and the Gulf of Mexico (CS&GM) during the period 1982–2016. Using a canonical correlation analysis (CCA) between the monthly mean anomalies of these fields, four coupled variability modes are identified: the dipole (March–April), transition (May–June), interocean (July–October), and meridional-wind (November–February) modes. Results show that El Niño–Southern Oscillation (ENSO) influences almost all the CS&GM coupled modes, except the transition mode, and that the North Atlantic Oscillation (NAO) in February has a strong negative correlation with the dipole and transition modes. The antisymmetric relationships found between the dipole mode and the NAO and ENSO indices confirm previous evidence about the competing remote forcings of both teleconnection patterns on the tropical North Atlantic variability. Precipitation in the CS and adjacent oceanic and land areas is sensitive to the wind–SST coupled variability modes from June to October. These modes seem to be strongly related to the interannual variability of the midsummer drought and the meridional migration of the intertropical convergence zone in the eastern Pacific. These findings may eventually lead to improving seasonal predictability in the CS&GM and surrounding land areas.</p>


2018 ◽  
Author(s):  
Paulina Ordoñez ◽  
Raquel Nieto ◽  
Yolande L. Serra ◽  
Luis Gimeno ◽  
Pedro Ribera ◽  
...  

Abstract. This work examines the origin of atmospheric water vapor arriving to the North American Monsoon (NAM) region over a 34-yr period (1981–2014) by using a Lagrangian diagnosis method. This methodology computes budgets of evaporation minus precipitation by calculating changes in the specific humidity of thousands of air particles advected into the study area by the observed winds. During the NAM wet season, on average the recycling process is the main water vapor source, followed by the supply of moisture from the Gulf of California. However, the water vapor transport that generates synoptic-scale rainfall comes primarily from the Caribbean Sea, the Gulf of Mexico and terrestrial eastern Mexico. An additional moisture source over the southwestern US is also identified in association with synoptic rainfall events over the NAM region. A high (low) moisture supply from the Caribbean Sea and the Gulf of Mexico from 4 to 6 days before precipitation events is responsible for high (low) rainfall intensity on synoptic scales during the monsoon peak. Westward propagating mid to upper level inverted troughs (IVs) seem to favor these water vapor fluxes. A 200 % increase in the moisture flux from the Caribbean Sea is related to the occurrence of heavy precipitation in the NAM area, accompanied by a decrease in water vapor advection from the Gulf of California.


Sign in / Sign up

Export Citation Format

Share Document