scholarly journals Turbulent dispersion properties from a model simulation of the western Mediterranean Sea

Ocean Science ◽  
2014 ◽  
Vol 10 (2) ◽  
pp. 167-175
Author(s):  
H. Nefzi ◽  
D. Elhmaidi ◽  
X. Carton

Abstract. Using a high-resolution primitive equation model of the western Mediterranean Sea, we analyzed the dispersion properties of a set of homogeneously distributed, passive particle pairs. These particles were initially separated by different distances D0 (D0 = 5.55, 11.1 and 16.65 km), and were seeded in the model at initial depths of 44 and 500 m. This realistic ocean model, which reproduces the main features of the regional circulation, puts into evidence the three well-known regimes of relative dispersion. The first regime due to the chaotic advection at small scales lasts only a few days (3 days at 44 m depth, a duration comparable with the integral timescale), and the relative dispersion is then exponential. In the second regime, extending from 3 to 20 days, the relative dispersion has a power law tα where α tends to 3 as D0 becomes small. In the third regime, a linear growth of the relative dispersion is observed starting from the twentieth day. For the relative diffusivity, the D2 growth is followed by the Richardson regime D4/3. At large scales, where particle velocities are decorrelated, the relative diffusivity is constant. At 500 m depth, the integral timescale increases (> 4 days) and the intermediate regime becomes narrower than that at 44 m depth due to the weaker effect of vortices (this effect decreases with depth). The turbulent properties become less intermittent and more homogeneous and the Richardson law takes place.

2013 ◽  
Vol 10 (4) ◽  
pp. 1099-1125
Author(s):  
H. Nefzi ◽  
D. Elhmaidi ◽  
X. Carton

Abstract. Using a high resolution primitive equation model of the western Mediterranean Sea, we analyzed the dispersion properties of a set of homogeneously distributed, passive particle pairs. These particles were initially separated by different distances D0 (D0 = 5.55, 11.1 and 16.5 km), and were seeded in the model at initial depths of 44 and 500 m. This realistic ocean model, which reproduces the main features of the regional circulation, puts in evidence the three well-known regimes of relative dispersion. The first regime due to the chaotic advection at small scales, lasts only a few days (3 days at 44 m depth, a duration comparable with the integral time scale) and the relative dispersion is then exponential. In the second regime, extending from 3 to 20 days, the relative dispersion has a power law tα where α tends to 3 as D0 becomes small. In the third regime, a linear growth of the relative dispersion is observed starting from the twentieth day. For the relative diffusivity, the D2 growth is followed by the Richardson regime D4/3. At large scales, where particle velocities are decorrelated, the relative diffusivity is constant. At 500 m depth, the integral time scale increases (> 4 days) and the intermediate regime becomes narrower than that at 44 m depth due to weaker effect of vortices (this effect decreases with depth). The turbulent properties become less intermittent and more homogeneous and the Richardson law takes place.


Author(s):  
M Luisa Córdoba ◽  
Antonio García Dopico ◽  
M Isabel García ◽  
Francisco Rosales ◽  
Jesús Arnaiz ◽  
...  

2017 ◽  
Author(s):  
Maher Bouzaiene ◽  
Milena Menna ◽  
Pierre-Marie Poulain ◽  
Dalila Elhmaidi

Abstract. Relative dispersion (D2) in the South Western Mediterranean is analyzed using surface drifter pairs deployed during the period from 1986 to 2016. The results show the existence of four well-known regimes. The first regime, characterized by an exponential increment of the relative dispersion (Lundgren or exponential regime), corresponds to the chaotic advection at small scales and small separation distances, lasts for a few days. In the second regime, extending from 1.5 to roughly 7 days, for scales between 25 and 57 km and 1–3 km of initial distance, D2 increases as time cubed (Richardson regime). The third regime occurs for initial distances of 5–10 km and times of 1.5–13 days; D2 increases quadratically with time (Ballistic regime). The forth regime corresponds to time scales larger than 34 days for initial distances of 1–3 km and to 23 days for 35–40 km with a linear increase in time of D2 (Rayleigh or diffusive regime). The relative diffusivity and characteristic dispersion time exhibit three different phases based on the initial pair separations and corresponding with Lundgren, Richardson and Rayleigh regimes, respectively. In the first phase (enstrophy cascade range) the diffusivity is ~ D2 for distances smaller than 15 km and initial separation distances between 5 km and 10 km, and also for distances smaller than 40 km for initial separation distances between 35 km and 40 km; characteristic dispersion time is constant. In the second phase (inverse energy cascade), the diffusivity and characteristic dispersion time increase with growing distances following the 4/3 and 2/3 power laws, respectively, for scale ranging between 3 and 15 km and for initial distances smaller than 3 km. The third phase occurs for distance larger than 55 km, all pair velocities are uncorrelated and both relative diffusivity and characteristic dispersion time are approximately constants.


2014 ◽  
Vol 59 (1) ◽  
Author(s):  
Salvatore Mele ◽  
Maria Pennino ◽  
Maria Piras ◽  
José Bellido ◽  
Giovanni Garippa ◽  
...  

AbstractThe metazoan parasite assemblage of the head of 30 specimens of the Atlantic chub mackerel (Scomber colias) from the western Mediterranean Sea was analysed. Eight species of parasites were found, four mazocraeid monogeneans: Grubea cochlear (prevalence = 10%), Kuhnia scombercolias (59%), K. scombri (52%), Pseudokuhnia minor (86%); three didymozoid trematodes: Nematobothrium cf. faciale (21%), N. filiforme (41%), N. scombri (7%); and one laerneopodid copepod: Clavelissa scombri (7%). Results were compared with previously published data from 14 localities of the eastern Mediterranean Sea and the Atlantic Ocean, using non-parametric univariate and multivariate analyses, and the whole parasite fauna of S. colias was compared with that of the congeners (S. australasicus, S. japonicus and S. scombrus). Parasites showed to reflect the biogeographical and phylogenetic history of host. From a methodological point of view, the use of both non-parametric univariate and multivariate techniques proved to be effective tools to detect dissimilarities between parasite assemblages.


2021 ◽  
Vol 9 (2) ◽  
pp. 208
Author(s):  
Valentina Vannucchi ◽  
Stefano Taddei ◽  
Valerio Capecchi ◽  
Michele Bendoni ◽  
Carlo Brandini

A 29-year wind/wave hindcast is produced over the Mediterranean Sea for the period 1990–2018. The dataset is obtained by downscaling the ERA5 global atmospheric reanalyses, which provide the initial and boundary conditions for a numerical chain based on limited-area weather and wave models: the BOLAM, MOLOCH and WaveWatch III (WW3) models. In the WW3 computational domain, an unstructured mesh is used. The variable resolutions reach up to 500 m along the coasts of the Ligurian and Tyrrhenian seas (Italy), the main objects of the study. The wind/wave hindcast is validated using observations from coastal weather stations and buoys. The wind validation provides velocity correlations between 0.45 and 0.76, while significant wave height correlations are much higher—between 0.89 and 0.96. The results are also compared to the original low-resolution ERA5 dataset, based on assimilated models. The comparison shows that the downscaling improves the hindcast reliability, particularly in the coastal regions, and especially with regard to wind and wave directions.


2007 ◽  
Vol 105 (1-2) ◽  
pp. 101-117 ◽  
Author(s):  
Tommaso Tesi ◽  
Stefano Miserocchi ◽  
Miguel A. Goñi ◽  
Leonardo Langone

Sign in / Sign up

Export Citation Format

Share Document