scholarly journals Interannual variability of the lake levels in northwest Russia based on satellite altimetry

Author(s):  
S. A. Lebedev ◽  
Y. I. Troitskaya ◽  
G. V. Rybushkina ◽  
M. N. Dobrovolsky

Abstract. Variability of the largest lakes levels in northwest Russia, a climatic change parameter, is characterized by alternating periods of rise and fall according to altimetric measurements of the TOPEX/Poseidon and Jason-1/2 satellites. Water level was calculated with the use of a regional adaptive retracking algorithm for the lakes Il’men, Ladoga, Onega and Peipus. Applications of this algorithm considerably increase the quantity of actual data records and significantly improve the accuracy of water level evaluation. According to the results, temporal variability of Lake Ilmen, Lake Ladoga and Lake Piepus levels is characterized by a wave with a period of 4–5 years, and that of Lake Onega level is characterized by a wave with a period of 15 years. During the period from 1993 to 2011, lake level rose at a rate of 1.17±0.95 cm/year for Lake Il’men, 0.24 ± 0.10 cm/year for Lake Ladoga, 1.39 ± 0.18 cm/year for Lake Piepus and 0.18 ± 0.09 cm/year for Lake Onega.

2021 ◽  
Author(s):  
Daniel Ariztegui ◽  
Clément Pollier ◽  
Andrés Bilmes

<p>Lake levels in hydrologically closed-basins are very sensitive to climatically and/or anthropogenically triggered environmental changes. Their record through time can provide valuable information to forecast changes that can have substantial economical and societal impact.</p><p>Increasing precipitation in eastern Patagonia (Argentina) have been documented following years with strong El Niño (cold) events using historical and meteorological data. Quantifying changes in modern lake levels allow determining the impact of rainfall variations while contributing to anticipate the evolution of lacustrine systems over the next decades with expected fluctuations in ENSO frequencies. Laguna Carrilaufquen Grande is located in the intermontane Maquinchao Basin, Argentina. Its dimension fluctuates greatly, from 20 to 55 km<sup>2</sup> water surface area and an average water depth of 3 m. Several well-preserved gravelly beach ridges witness rainfall variations that can be compared to meteorological data and satellite images covering the last ~50 years. Our results show that in 2016 lake level was the lowest of the past 44 years whereas the maximum lake level was recorded in 1985 (+11.8 m above the current lake level) in a position 1.6 km to the east of the present shoreline. A five-years moving average rainfall record of the area was calculated smoothing the extreme annual events and correlated to the determined lake level fluctuations. The annual variation of lake levels was up to 1.2 m (e.g. 2014) whereas decadal variations related to humid-arid periods for the interval 2002 to 2016 were up to 9.4 m. These data are consistent with those from other monitored lakes and, thus, our approach opens up new perspectives to understand the historical water level fluctuations of lakes with non-available monitoring data.</p><p> </p><p>Laguna de los Cisnes in the Chilean section of the island of Tierra del Fuego, is a closed-lake presently divided into two sections of 2.2 and 11.9 km<sup>2</sup>, respectively. These two water bodies were united in the past forming a single larger lake. The lake level was  ca. 4 m higher than today as shown by clear shorelines and the outcropping of large Ca-rich microbialites. Historical data, aerial photographs and satellite images indicate that the most recent changes in lake level are the result of a massive decrease of water input during the last half of the 20<sup>th</sup> century triggered by an indiscriminate use of the incoming water for agricultural purposes. The spectacular outcropping of living and fossil microbialites is not only interesting from a scientific point of view but has also initiated the development of the site as a local touristic attraction. However, if the use of the incoming water for agriculture in the catchment remains unregulated the lake water level might drop dangerously and eventually the lake might fully desiccate.</p><p>These two examples illustrate how recent changes in lake level can be used to anticipate the near future of lakes. They show that ongoing climate changes along with the growing demand of natural resources have already started to impact lacustrine systems and this is likely to increase in the decades to come.</p>


2020 ◽  
Vol 12 (17) ◽  
pp. 2835
Author(s):  
Karina Nielsen ◽  
Ole Baltazar Andersen ◽  
Heidi Ranndal

Satellite altimetry is an important contributor for measuring the water level of continental water bodies. The technique has been applied for almost three decades. In this period the data quality has increased and the applications have evolved from the study of a few large lakes and rivers, to near global applications at various scales. Products from current satellite altimetry missions should be validated to continuously improve the measurements. Sentinel-3A has been operating since 2016 and is the first mission operating in synthetic aperture radar (SAR) mode globally. Here we evaluate its performance in capturing lake level variations based on a physical and an empirical retracker provided in the official level 2 product. The validation is performed for more than 100 lakes in the United States and Canada where the altimetry based water levels are compared with in situ data. As validation measures we consider the root mean squared error, the Pearson correlation, and the percentage of outliers. For the US sites the median of the RMSE value is 25 cm and 19 cm and the median of the Pearson correlations are 0.86 and 0.93 for the physical and empirical retracker, respectively. The percentage of outliers (median) is 11% for both retrackers. The validations measures are slightly poorer for the Canadian sites; the median RMSE is approximately 5 cm larger, the Pearson correlation 0.1 lower, and the percentage of outliers 5% larger. The poorer performance for the Canadian sites is mainly related to the presence of lake ice in the winter period where the surface elevations are not able to map the surface correctly. The validation measures improve considerably when evaluated for summer data only. For both areas we show that the reconstruction of the water level variations based on the empirical retracker is significantly better compared to that of the physical retracker in terms of the RMSE and the Pearson correlation.


2020 ◽  
Vol 12 (9) ◽  
pp. 1448 ◽  
Author(s):  
Peng Li ◽  
Hui Li ◽  
Fang Chen ◽  
Xiaobin Cai

Satellite altimetry has been effectively used for monitoring lake level changes in recent years. This work focused on the integration of multiple satellite altimetry datasets from ICESat-1, Envisat and Cryosat-2 for the long-term (2002–2017) observation of lake level changes in the middle and lower Yangtze River Basin (MLYB). Inter-altimeter biases were estimated by using the gauged daily water level data. It showed that the average biases of ICESat-1 and Cryosat-2 with respect to Envisat were 6.7 cm and 3.1 cm, respectively. The satellite-derived water levels were evaluated against the gauged data. It indicated significantly high correlations between the two datasets, and the combination of three altimetry data produced precise water level time series with high temporal and spatial resolutions. A liner regression model was used to estimate the rates of lake level changes over the study period after the inter-altimeter bias adjustment was performed. The results indicated that ~79% of observed lakes (41/52) showed increasing trends in water levels with rates up to 0.203 m/y during 2002–2017. The temporal analysis of lake level variations suggested that ~60% of measured lakes (32/53) showed decreasing trends during 2002–2009 while ~66% of measured lakes (79/119) exhibited increasing trends during 2010–2017. Most of measured reservoirs displayed rapidly rising trends during the study period. The driving force analysis indicated that the temporal heterogeneity of precipitation can be mainly used to explain the observed pattern of lake level changes. The operation of reservoirs and human water consumption were also responsible for the lake level variations. This work demonstrated the potential of integrating multiple satellite altimeters for the long-term monitoring of lake levels, which can help to evaluate the impact of climate change and anthropogenic activities on regional water resources.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1801 ◽  
Author(s):  
Peter Waylen ◽  
Christopher Annear ◽  
Erin Bunting

Annual precipitation inputs to the Lake Mweru basin, Zambia, were computed from historic data and recent gridded data sets to determine historic (1925–2013) changes in lake level and their potential impacts on the important fisheries of the lake. The results highlight a period from the early 1940s to the mid-1960s when interannual variability of inputs doubled. Existing lake level data did not capture this period but they did indicate that levels were positively correlated with precipitation one to three years previously, reflecting the hydrologic storage of the lake, the inflowing Luapula River and the upstream Bangweulu wetland complex. Lag cross-correlations of rainfall to El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole were weak and spatially and temporally discontinuous. The two drivers were generally positively correlated and induced opposing effects upon annual precipitation and lagged lake levels. This correlation became non-significant during the time of high observed interannual variability and basin inputs were prone to the vagaries of either driver independently or reinforcing drought/excess conditions. During times of high flows and persistent elevated lake levels, breeding habitat for fish increased markedly, as did nutrition supplied from the upstream wetlands. High hydrologic storage ensures that lake levels change slowly, despite contemporary precipitation totals. Therefore, good conditions for the growth of fish populations persisted for several years and populations boomed. Statistical models of biological populations indicated that such temporally autocorrelated conditions, combined with abundant habitat and nutrition can lead the “boom and bust” of fish populations witnessed historically in Lake Mweru.


1997 ◽  
Vol 47 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Mark B. Abbott ◽  
Michael W. Binford ◽  
Mark Brenner ◽  
Kerry R. Kelts

Sediment cores collected from the southern basin of Lake Titicaca (Bolivia/Peru) on a transect from 4.6 m above overflow level to 15.1 m below overflow level are used to identify a new century-scale chronology of Holocene lake-level variations. The results indicate that lithologic and geochemical analyses on a transect of cores can be used to identify and date century-scale lake-level changes. Detailed sedimentary analyses of subfacies and radiocarbon dating were conducted on four representative cores. A chronology based on 60 accelerator mass spectrometer radiocarbon measurements constrains the timing of water-level fluctuations. Two methods were used to estimate the14C reservoir age. Both indicate that it has remained nearly constant at ∼25014C yr during the late Holocene. Core studies based on lithology and geochemistry establish the timing and magnitude of five periods of low lake level, implying negative moisture balance for the northern Andean altiplano over the last 3500 cal yr. Between 3500 and 3350 cal yr B.P., a transition from massive, inorganic-clay facies to laminated organic-matter-rich silts in each of the four cores signals a water-level rise after a prolonged mid-Holocene dry phase. Evidence of other significant low lake levels occurs 2900–2800, 2400–2200, 2000–1700, and 900–500 cal yr B.P. Several of the low lake levels coincided with cultural changes in the region, including the collapse of the Tiwanaku civilization.


Author(s):  
H. Zhao ◽  
R. Xu ◽  
G. Qiao

Abstract. There are more than 1,000 lakes (> 1 km2) on the Tibetan Plateau and lake level is an important physical feature of lake changes. Lake level change is an important indicator to reflect changes of climate and environment in a certain area. The development of satellite altimetry has provided data support for the monitoring of lake level and effectively compensated for the deficiencies of traditional water level monitoring in alpine regions. In this study, the laser altimeter of ICESat-2 and the radar altimeter of CryoSat-2 are used to provide lake level of the Nam Co lake during the period of 2010–2020. The result showed that the standard deviation (SD) of ICESat-2 (0.0895 m) was lower than the SD of CryoSat-2 (0.2556 m) and the months with higher SD values were mostly during the ice period of Nam Co lake. ICESat-2 had a considerably decreased measurement uncertainty. There are systematic differences in lake levels extracted by different altimetry satellites and the mean bias between ICESat-2 and CryoSat-2 was around 0.45 m. After removing inter-altimeter biases, the continuous lake levels from 2010 to 2020 were constructed. The inter-annual changes in lake levels were flat or even slightly decreased and the lake level has dropped by about 0.80 m in general. The water level generally reached the highest from September to October of the year in terms of intra-annual changes. Besides, temperature and precipitation changes were closely related to lake level tendency.


2007 ◽  
Vol 39 (2) ◽  
pp. 141-150 ◽  
Author(s):  
S. P. Harrison ◽  
S. E. Metcalfe

ABSTRACT Fluctuations in the extent of closed lakes provide a detailed record of regional and continental variations in mean annual water budget. The temporal sequence of hydrological fluctuations during the Holocene in North America has been reconstructed using information from the Oxford Lake-Level Data Bank. This data base includes 67 basins from the Americas north of the equator. Maps of lake status, an index of relative depth, are presented for the period 10,000 to 0 yr BP. The early Holocene was characterised by increasingly arid conditions, which led to widespread low lake levels in the mid-latitudes by 9,000 yr BP. By 6,000 yr BP this zone of low lakes extended from 32o to 51oN. Many of the features of the present day lake-level pattern, particularly high lake levels north of 46oN and along the eastern seaboard, were established by 3.000 yr BP. Four distinctive regional patterns of lake behaviour through time are apparent. Histograms of lake status from 20,000 to 0 yr BP are presented for each of these regions. They illustrate the temporal patterns of lake-level fluctuations on a time scale of 103 — 104 yr. Changes in lake status over North America are interpreted as indicating displacements in major features of the general circulation, specifically the zonal Westerlies and the Equatorial Trough, as reflected by changes in air mass trajectories and hence the position of air mass boundaries over the continent.


2017 ◽  
Vol 88 (2) ◽  
pp. 265-276 ◽  
Author(s):  
Pierre-Marc Godbout ◽  
Martin Roy ◽  
Jean J. Veillette ◽  
Joerg M. Schaefer

AbstractSurface exposure dating was applied to erosional shorelines associated with the Angliers lake level that marks an important stage of Lake Ojibway. The distribution of 1510Be ages from five sites shows a main group (10 samples) of coherent10Be ages yielding a mean age of 9.9±0.7 ka that assigns the development of this lake level to the early part of the Lake Ojibway history. A smaller group (3 samples) is part of a more scattered distribution of older10Be ages (with 2 outliers) that points to an inheritance of cosmogenic isotopes from a previous exposure, revealing an apparent mean age of 15.8±0.9 ka that is incompatible with the Ojibway inundation and the regional deglaciation. Our results provide the first direct10Be chronology on the sequence of lake levels in the Ojibway basin, which includes the lake stage presumably associated with the confluence and subsequent drainage of Lakes Agassiz and Ojibway. This study demonstrates the potential of this approach to date glacial lake shorelines and underlies the importance of obtaining additional chronological constraints on the Agassiz-Ojibway shoreline sequence to confidently assign a particular lake stage and/or lake-level drawdown to a specific time interval of the deglaciation.


Sign in / Sign up

Export Citation Format

Share Document