scholarly journals Sequential InSAR Time Series Deformation Monitoring of Land Subsidence and Rebound in Xi’an, China

2019 ◽  
Vol 11 (23) ◽  
pp. 2854 ◽  
Author(s):  
Baohang Wang ◽  
Chaoying Zhao ◽  
Qin Zhang ◽  
Mimi Peng

Interferometric synthetic aperture radar (InSAR) time series deformation monitoring plays an important role in revealing historical displacement of the Earth’s surface. Xi’an, China, has suffered from severe land subsidence along with ground fissure development since the 1960s, which has threatened and will continue to threaten the stability of urban artificial constructions. In addition, some local areas in Xi’an suffered from uplifting for some specific period. Time series deformation derived from multi-temporal InSAR techniques makes it possible to obtain the temporal evolution of land subsidence and rebound in Xi’an. In this paper, we used the sequential InSAR time series estimation method to map the ground subsidence and rebound in Xi’an with Sentinel-1A data during 2015 to 2019, allowing estimation of surface deformation dynamically and quickly. From 20 June 2015 to 17 July 2019, two areas subsided continuously (Sanyaocun-Fengqiyuan and Qujiang New District), while Xi’an City Wall area uplifted with a maximum deformation rate of 12 mm/year. Furthermore, Yuhuazhai subsided from 20 June 2015 to 14 October 2018, and rebound occurred from 14 October 2018 to 17 July 2019, which can be explained as the response to artificial water injection. In the process of artificial water injection, the rebound pattern can be further divided into immediate elastic recovery deformation and time-dependent visco-elastic recovery deformation.

2018 ◽  
Vol 10 (11) ◽  
pp. 1731 ◽  
Author(s):  
Zhengjia Zhang ◽  
Chao Wang ◽  
Mengmeng Wang ◽  
Ziwei Wang ◽  
Hong Zhang

In recent years, with the development of urban expansion in Zhengzhou city, the underground resources, such as underground water and coal mining, have been exploited greatly, which have resulted in ground subsidence and several environmental issues. In order to study the spatial distribution and temporal changes of ground subsidence of Zhengzhou city, the Interferometric Synthetic Aperture Radar (InSAR) time series analysis technique combining persistent scatterers (PSs) and distributed scatterers (DSs) was proposed and applied. In particular, the orbit and topographic related atmospheric phase errors have been corrected by a phase ramp correction method. Furthermore, the deformation parameters of PSs and DSs are retrieved based on a layered strategy. The deformation and DEM error of PSs are first estimated using conventional PSI method. Then the deformation parameters of DSs are retrieved using an adaptive searching window based on the initial results of PSs. Experimental results show that ground deformation of the study area could be retrieved by the proposed method and the ground deformation is widespread and unevenly distributed with large differences. The deformation rate ranges from −55 to 10 mm/year, and the standard deviation of the results is about 8 mm/year. The observed InSAR results reveal that most of the subsidence areas are in the north and northeast of Zhengzhou city. Furthermore, it is found that the possible factors resulting in the ground subsidence include sediment consolidation, water exploitation, and urban expansion. The result could provide significant information to serve the land subsidence mitigation in Zhengzhou city.


Author(s):  
J. Pacheco-Martínez ◽  
S. Wdowinski ◽  
E. Cabral-Cano ◽  
M. Hernández-Marín ◽  
J. A. Ortiz-Lozano ◽  
...  

Abstract. Interferometric Synthetic Aperture Radar (InSAR) has become a valuable tool for surface deformation monitoring, including land subsidence associated with groundwater extraction. Another useful tools for studying Earth's surface processes are geophysical methods such as Gravimetry. In this work we present the application of InSAR analysis and gravimetric surveying to generate valuable information for risk management related to land subsidence and surface faulting. Subsidence of the city of Aguascalientes, Mexico is presented as study case. Aguascalientes local governments have addressed land subsidence issues by including new requirements for new constructions projects in the State Urban Construction Code. Nevertheless, the resulting zoning proposed in the code is still subjective and not clearly defined. Our work based on gravimetric and InSAR surveys is aimed for improving the subsidence hazard zoning proposed in the State Urban Code in a more comprehensive way. The study includes a 2007–2011 ALOS InSAR time-series analysis of the Aguascalientes valley, an interpretation of the compete Bouguer gravimetric anomaly of the Aguascalientes urban area, and the application of time series and gravimetric anomaly maps for improve the subsidence hazard zoning of Aguascalientes City.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 115 ◽  
Author(s):  
Wei Duan ◽  
Hong Zhang ◽  
Chao Wang

Time series interferometric synthetic aperture radar SAR (TSInSAR) is one of the most important surface deformation monitoring techniques, and has been widely used in geodesy. Deformation estimation is one of the main steps of TSInSAR processing, so an effective and efficient algorithm is necessary. Present algorithms have some limitations such as computing c osts or errors caused by local extremums. In this work, a novel deformation estimation method based on the simulated annealing (SA) algorithm is proposed to handle this problem. The SA algorithm uses a random search to avoid local extremums and thus can be more likely to get the global optimal solution of deformation. By adopting a better annealing method, this algorithm gets high precision deformation results in less time than most present algorithms. In addition, it can estimate complex nonlinear deformation without adding any computing costs. The results, tested on the real SAR data, confirm the reliability and effectiveness of the SA-based deformation estimation algorithm.


2021 ◽  
Vol 13 (15) ◽  
pp. 3044
Author(s):  
Mingjie Liao ◽  
Rui Zhang ◽  
Jichao Lv ◽  
Bin Yu ◽  
Jiatai Pang ◽  
...  

In recent years, many cities in the Chinese loess plateau (especially in Shanxi province) have encountered ground subsidence problems due to the construction of underground projects and the exploitation of underground resources. With the completion of the world’s largest geotechnical project, called “mountain excavation and city construction,” in a collapsible loess area, the Yan’an city also appeared to have uneven ground subsidence. To obtain the spatial distribution characteristics and the time-series evolution trend of the subsidence, we selected Yan’an New District (YAND) as the specific study area and presented an improved time-series InSAR (TS-InSAR) method for experimental research. Based on 89 Sentinel-1A images collected between December 2017 to December 2020, we conducted comprehensive research and analysis on the spatial and temporal evolution of surface subsidence in YAND. The monitoring results showed that the YAND is relatively stable in general, with deformation rates mainly in the range of −10 to 10 mm/yr. However, three significant subsidence funnels existed in the fill area, with a maximum subsidence rate of 100 mm/yr. From 2017 to 2020, the subsidence funnels enlarged, and their subsidence rates accelerated. Further analysis proved that the main factors induced the severe ground subsidence in the study area, including the compressibility and collapsibility of loess, rapid urban construction, geological environment change, traffic circulation load, and dynamic change of groundwater. The experimental results indicated that the improved TS-InSAR method is adaptive to monitoring uneven subsidence of deep loess area. Moreover, related data and information would provide reference to the large-scale ground deformation monitoring and in similar loess areas.


2020 ◽  
Vol 12 (22) ◽  
pp. 3756
Author(s):  
Wei Shi ◽  
Guan Chen ◽  
Xingmin Meng ◽  
Wanyu Jiang ◽  
Yan Chong ◽  
...  

Land subsidence is one of the major urban geological hazards, which seriously restricts the development of many cities in the world. As one of the major cities in China, Xi’an has also been experiencing a large area of land subsidence due to excessive exploitation of groundwater. Since the Heihe Water Transfer Project (HWTP) became fully operational in late 2003, the problem of subsidence has been restrained, but other issues, such as ground rebounds, have appeared, and the effect of the underground space utilization on land subsidence remains unsolved. The spatial-temporal pattern of land subsidence and rebound in Xi’an after HWTP and their possible cause have so far not been well understood. In this study, the evolutionary characteristics of land subsidence and rebound in Xi’an city from 2007–2019 was investigated using Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-SAR) technology to process the Advanced Land Observing Satellite (ALOS) and Sentinel-1A SAR datasets, and their cause and the correlation with groundwater level changes and the underground space utilization were discussed. We found that the land subsidence rate in the study area slowed from 2007–2019, and the subsidence area shrank and gradually developed into three relatively independent and isolated subsidence areas primarily. Significant local rebound deformation up to 22 mm/y commenced in the groundwater recharge region during 2015–2019. The magnitude of local rebound was dominated by the rise in groundwater level due to HWTP, whereas tectonic faults and ground fissures control the range of subsidence and the uplift area. The influence of building load on surface deformation became increasingly evident and primarily manifested by slowing the subsidence reduction trend. Additionally, land subsidence caused by the disturbances during the subway construction period was stronger than that in the operational stage. Future land subsidence in Xi’an is predicted to be alleviated overall, and the areas of rebound deformation will continue increasing for a limited time. However, uneven settlement range may extend to the Qujiang and Xixian New District due to the rapid urban construction. Our results could provide a scientific basis for land subsidence hazard mitigation, underground space planning, and groundwater management in Xi’an or similar regions where severe ground subsidence was induced by rapid urbanization.


2020 ◽  
Vol 12 (13) ◽  
pp. 2125
Author(s):  
Li Duan ◽  
Huili Gong ◽  
Beibei Chen ◽  
Chaofan Zhou ◽  
Kunchao Lei ◽  
...  

Land subsidence threatens the stable operation of urban rail transit, including subways. Obtaining deformation information during the entire life-cycle of a subway becomes a necessary means to guarantee urban safety. Restricted by sensor life and cost, the single-sensor Multi-temporal Interferometric Synthetic Aperture Radar (MTI) technology has been unable to meet the needs of long-term sequence, high-resolution deformation monitoring, especially of linear objects. The multi-sensor MTI time-series fusion (MMTI-TSF) techniques has been proposed to solve this problem, but rarely mentioned. In this paper, an improved MMTI-TSF is systematically explained and its limitations are discussed. Taking the Beijing Subway Network (BSN) as a case study, through cross-validation and timing verification, we find that the improved MMTI-TSF results have higher accuracy (R2 of 98% and, Root Mean Squared Error (RMSE) of 4mm), and compared with 38 leveling points, the fitting effect of the time series is good. We analyzed the characteristics of deformation along the BSN over a 15-year periods. The results suggest that there is a higher risk of instability in the eastern section of Beijing Subway Line 6 (L6). The land subsidence characteristics along the subway lines are related to its position from the subsidence center, and the edge of the subsidence center presents a segmented feature.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3073 ◽  
Author(s):  
Xing ◽  
Chen ◽  
Yuan ◽  
Shi

Building deformation models consistent with reality is a crucial step for time-series deformation monitoring. Most deformation models are empirical mathematical models, lacking consideration of the physical mechanisms of observed objects. In this study, we propose an improved time-series deformation model considering rheological parameters (viscosity and elasticity) based on the Kelvin model. The functional relationships between the rheological parameters and deformation along the Synthetic Aperture Radar ( SAR) line of sight are constructed, and a method for rheological parameter estimation is provided. To assess the feasibility and accuracy of the presented model, both simulated and real deformation data over a stretch of the Lungui highway (built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. With the proposed deformation model, the unknown rheological parameters over all the high coherence points are obtained and the deformation time-series are generated. The high-pass (HP) deformation component and external leveling ground measurements are utilized to assess the modeling accuracy. The results show that the root mean square of the residual deformation is ±1.6 mm, whereas that of the ground leveling measurements is ±5.0 mm, indicating an improvement in the proposed model by 53%, and 34% compared to the pure linear velocity model. The results indicate the reliability of the presented model for the application of deformation monitoring of soft clay highways. The estimated rheological parameters can be provided as a reference index for the interpretation of long-term highway deformation and the stability control of subgrade construction engineering.


2021 ◽  
Vol 233 ◽  
pp. 01149
Author(s):  
Ying Yang ◽  
Yifang Sun ◽  
Shihong Wu ◽  
Xuegang Dong ◽  
Hanyao Huang ◽  
...  

It is difficult to monitor the surface deformation along the expressway for the critical climate conditions in Tibet plateau. In this paper, based on sentinel-1A SAR data, the surface deformation along the Gongyu expressway was tried to evaluate using time-series SBAS-InSAR method. The results indicate that the surface deformation in most regions is within the safe acquirement of the expressway. Moreover, the surface deformation indicates a strong seasonal effect. Finally, two special spots with dangerous surface deformation are identified along the expressway.


Author(s):  
S. Thapa ◽  
R. S. Chatterjee ◽  
K. B. Singh ◽  
D. Kumar

Differential SAR-Interferometry (D-InSAR) is one of the potential source to measure land surface motion induced due to underground coal mining. However, this technique has many limitation such as atmospheric in homogeneities, spatial de-correlation, and temporal decorrelation. Persistent Scatterer Interferometry synthetic aperture radar (PS-InSAR) belongs to a family of time series InSAR technique, which utilizes the properties of some of the stable natural and anthropogenic targets which remain coherent over long time period. In this study PS-InSAR technique has been used to monitor land subsidence over selected location of Jharia Coal field which has been correlated with the ground levelling measurement. This time series deformation observed using PS InSAR helped us to understand the nature of the ground surface deformation due to underground mining activity.


2020 ◽  
Vol 10 (7) ◽  
pp. 2294 ◽  
Author(s):  
Mimi Peng ◽  
Chaoying Zhao ◽  
Qin Zhang ◽  
Zhong Lu ◽  
Lin Bai ◽  
...  

Shandong peninsula, the largest peninsula of China, is prone to severe land subsidence hazards along the coastline. In this paper, we provide, for the first time, multi-scale and multi-dimensional time series deformation measurements of the entire Shandong peninsula with advanced time series Interferometric Synthetic Aperture Radar (InSAR) techniques. We derive the spatiotemporal evolutions of the land subsidence by integrating multi-track Sentinel-1A/B and RADARSAT-2 satellite images. InSAR measurements are cross validated by the independent deformation rate results generated from different SAR tracks, reaching a precision of less than 1.3 cm/a. Two-dimensional time series over the Yellow River Delta (YRD) from 2017 to 2019 are revealed by integrating time series InSAR measurements from both descending and ascending tracks. Land subsidence zones are mainly concentrated on the YRD. In total, twelve typical localized subsidence zones are identified in the cities of Dongying (up to 290 mm/a; brine and groundwater exploitation for industrial usage), Weifang (up to 170 mm/a; brine exploitation for industrial usage), Qingdao (up to 70 mm/a; aquaculture and land reclamation), Yantai (up to 50 mm/a; land reclamation) and Rizhao (up to 60 mm/a; land reclamation). The causal factors of localized ground deformation are discussed, encompassing groundwater and brine exploitation, aquaculture and land reclamation. Multi-scale surveys of spatiotemporal deformation evolution and mechanism analysis are critical to make decisions on underground fluid exploitation and land reclamation.


Sign in / Sign up

Export Citation Format

Share Document