scholarly journals Land Subsidence risk maps and InSAR based angular distortion structural vulnerability assessment: an example in Mexico City

Author(s):  
Enrique Fernández-Torres ◽  
Enrique Cabral-Cano ◽  
Dario Solano-Rojas ◽  
Emre Havazli ◽  
Luis Salazar-Tlaczani

Abstract. Land subsidence is a phenomenon present in several cities in central Mexico, and results from a combination of groundwater resources' overexploitation and the local stratigraphic nature. Furthermore, subsidence occurs inhomogeneously in space, producing differential vertical displacements, which affect both the natural media, as well as human-built structures. Subsidence associated structural-vulnerability assessments usually rely on direct field measurements to determine parameters such as angular distortion. However, the large areas in which land subsidence occurs (city-scale) in Mexico City hinders a direct quantification of differential displacements for all buildings and structures present in it. A Sentinel-1 based subsidence analysis shows that the highest velocities are located on the eastern sector of the city. This velocity map was used as the basis for a population density weighted land subsidence correlation analysis. Our Land Subsidence Risk assessment indicates that 15.43 % of the population of Mexico City live in intermediate, high and very-high risk zones which corresponds to 1 358 873 inhabitants. Therefore, a significant percentage of Mexico City's population is vulnerable to suffering damage in their housing structures due to land subsidence. Furthermore, the lower income inhabitants share a proportionally greater economic cost due to land subsidence and associated shallow faulting. The structural vulnerability analysis of the civil structures in the city was performed using angular distortion maps derived from the subsidence velocity gradient between October 2014–October 2017 period. These maps indicate that within this time window, ∼12 % of the total urbanized area in Mexico City had already exceeded a 0.002 radian angular distortion threshold; above which damage in civil structures is more likely to occur. In fact, more than 1 million people have already suffered damages in their houses due to the differential ground subsidence and the resulting structural angular distortion. With these results, we can evaluate correspondence between angular distortion map and critical infrastructure of the city, as a result, we found that between 0 % and 12.84 % of these buildings have undergone over 0.002 radian angular distortion.

2021 ◽  
Author(s):  
Francesca Cigna ◽  
Deodato Tapete

<p>Several major cities in central Mexico suffer from aquifer depletion and land subsidence driven by overexploitation of groundwater resources to address increasing water demands for domestic, industrial and agricultural use. Ground settlement often combines with surface faulting, fracturing and cracking, causing damage to urban infrastructure, including private properties and public buildings, as well as transport infrastructure and utility networks. These impacts are very common and induce significant economic loss, thus representing a key topic of concern for inhabitants, authorities and stakeholders. This work provides an Interferometric Synthetic Aperture Radar (InSAR) 2014-2020 survey based on parallel processing of Sentinel-1 IW big data stacks within ESA’s Geohazards Exploitation Platform (GEP), using hosted on-demand services based on multi-temporal InSAR methods including Small BAseline Subset (SBAS) and Persistent Scatterers Interferometry (PSI). Surface faulting hazard is constrained based on differential settlement observations and the estimation of angular distortions that are produced on urban structures. The assessment of the E-W deformation field and computation of horizontal strain also allows the identification of hogging (tensile strain or extension) and sagging (compression) zones, where building cracks are more likely to develop at the highest and lowest elevations, respectively. Sentinel-1 observations agree with in-situ observations, static GPS surveying and continuous GNSS monitoring data. The distribution of field surveyed faults and fissures compared with maps of angular distortions and strain also enables the identification of areas with potentially yet-unmapped and incipient ground discontinuities. A methodology to embed such information into the process of surface faulting risk assessment for urban infrastructure is proposed and demonstrated for the Metropolitan Area of Mexico City [1], one of the fastest sinking cities globally (up to 40 cm/year subsidence rates), and the state of Aguascalientes [2], where a structurally-controlled fast subsidence process (over 10 cm/year rates) affects the namesake valley and capital city. The value of this research lies in the demonstration that InSAR data and their derived parameters are not only essential to constrain the deformation processes, but can also serve as a direct input into risk assessment to quantify (at least, as a lower bound) the percentage of properties and population at risk, and monitor how this percentage may change as land subsidence evolves.</p><p>[1] Cigna F., Tapete D. 2021. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. <em>Remote Sens. Environ.</em> 253, 1-19, doi:10.1016/j.rse.2020.112161</p><p>[2] Cigna F., Tapete D. 2021. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. <em>Remote Sens. Environ.</em> 254, 1-23, doi:10.1016/j.rse.2020.112254</p>


2021 ◽  
Author(s):  
hamid Kardan moghaddam ◽  
Zahra Rahimzadeh kivi ◽  
Fatemeh Javadi ◽  
Mohammad Heydari

Abstract This study evaluates and predicts the ground subsidence that happens due to the haphazard operation of groundwater resources. Also, several strategies have been developed to control this unpleasant phenomenon. For this purpose, groundwater flow simulation has been conducted using MODFLOW numerical model, and subsidence simulation in Najafabad plain has been done using SUB package under three climatic scenarios for future periods. Examination of the simulation results shows that the amount of land subsidence will increase with the aquifer operation's continuation. The maximum amount of subsidence for 6 years in drought conditions will be 23 cm at the aquifer's outlet. According to the land subsidence results at the aquifer, risk zoning of the aquifer operation was done to develop a solution to reduce the withdrawal of groundwater resources to control subsidence. Therefore, risk zoning was performed using land use and the extent of operation of groundwater resources. The results showed that the north-eastern part of the aquifer has the maximum risk of subsidence. According to the obtained results from subsidence risk zoning, scenarios of reduced water withdrawal from the aquifer in its outlet were developed. The treatment strategies results showed that the maximum amount of subsidence in wet, normal and dry conditions will be 10, 14 and 18 cm, respectively. These results indicate a 14% improvement in the quantitative condition of the aquifer in wet conditions, 10% in normal conditions and 7% in dry conditions in the total aquifer of Najafabad. Improvement of conditions by simulation shows the impact of the importance of optimal utilization of groundwater resources.


2020 ◽  
Author(s):  
Mahmud Haghshenas Haghighi ◽  
Mahdi Motagh

<p>Iran is located in a semi-arid to arid environment and is highly dependent on its groundwater resources for development in its agricultural and industrial sectors. In many aquifers across the country, unsustainable groundwater extraction in the past few decades caused severe groundwater level decline, at locations exceeding 20 m. The country is divided into six major basins. However, neither the water consumption nor renewable water resources are distributed evenly. Quantitative assessment of the groundwater situation in different basins is a piece of crucial information for improving management practices. In this study, we use satellite observations to assess the groundwater situation across Iran.</p><p>We observe the terrestrial water storage (TWS) from Satellite gravimetry measurements of Gravity Recovery And Climate Experiment (GRACE). These observations provide a country-scale picture of groundwater variations at a coarse spatial resolution of 500 km. In all six basins, TWS declines during the 15 year lifetime of GRACE from 2002 until 2017. In total, the Equivalent Water Height (EWH) declines as much as approximately 10 cm during this period. Although part of this decline is caused by other components such as surface water or soil moisture, groundwater decline is responsible for the major part.</p><p>The compaction of aquifers resulted from the over-extraction of groundwater can be observed as land subsidence on the surface. We analyze ground subsidence for the whole Iran using Interferometric Synthetic Aperture Radar (InSAR) observations of the Copernicus Sentinel-1 satellite and present the first detailed map of compacting aquifers across the country at a high spatial resolution of 100 m. The average rate of displacement, exceeding 30 cm/yr in some areas, reveals hundreds of aquifers across the country are suffering unsustainable groundwater consumption. The distribution of subsidence basins is significantly correlated with the distribution of agricultural regions.</p><p>To obtain information on the sustainability of groundwater consumption, we separate the time series of land subsidence into two parts: the short term part as elastic/recoverable component and the long-term part as inelastic/irrecoverable. The ratio between elastic and inelastic elements provides quantitative measurements of aquifer health. Combining the Sentinel-1 subsidence measurements with GRACE observations of groundwater variations gives us new details on how the groundwater is consumed across different basins in the country. The results can have essential implications on the more sustainable management of groundwater resources.</p>


2019 ◽  
Vol 9 (3) ◽  
pp. 108
Author(s):  
Enton Bedini

Persistent Scatterer Interferometry (PSI) analysis of Sentinel-1 C-band radar spaceborne imagery was carried out to detect ground subsidence zones in the city of Tirana, Albania. Fifty-eight Sentinel-1A Interferometric Wide (IW) images of the time period January 2017 – December 2018, with a temporal resolution of 12 days, were used as input to the PSI. The PSI technique can detect millimeter-scale ground motion. The results show a zone of ground subsidence of about 7 mm/year along a segment of the Tirana Outer Ring road, where numerous tall buildings have been constructed in the last twenty years. In the northern part of the Kamza municipality a ground subsidence of about 2-3 mm/year is observed. In the western part of the Kamza municipality, it is also observed a ground subsidence of about 7 mm/year. In general, the areas where ground subsidence was detected from the PSI analysis, are characterized by urban expansion in the last thirty years. The ground subsidence could be a result of the lowering of the water table from the construction works or from over exploitation of groundwater resources. The study represents the first reported analysis of the Sentinel-1 imagery for ground motion detection in the city of Tirana. Further monitoring and detailed studies on the causes of the ground subsidence in this important urban area are necessary.


Author(s):  
K. C. Fergason ◽  
M. L. Rucker ◽  
B. B. Panda

Abstract. Depletion of groundwater resources in many deep alluvial basin aquifers in the Western USA is causing land subsidence, as it does in many regions worldwide. Land subsidence can severely and adversely impact infrastructure by changing the ground elevation, ground slope (grade) and through the development of ground cracks known as earth fissures that can erode into large gullies. Earth fissures have the potential to compromise the foundations of dams, levees, and other infrastructure and cause failure. Subsequent to an evaluation of the overall subsidence experienced in the vicinity of subsidence-impacted infrastructure, a detailed investigation to search for earth fissures, and design and/or mitigation of potentially effected infrastructure, a focused monitoring system should be designed and implemented. Its purpose is to provide data, and ultimately knowledge, to reduce the potential adverse impacts of land subsidence and earth fissure development to the pertinent infrastructure. This risk reduction is realized by quantifying the rate and distribution of ground deformation, and to detect ground rupture if it occurs, in the vicinity of the infrastructure. The authors have successfully designed and implemented monitoring systems capable of quantifying rates and distributions of ground subsidence and detection of ground rupture at multiple locations throughout the Western USA for several types of infrastructure including dams, levees, channels, basins, roadways, and mining facilities. Effective subsidence and earth fissure monitoring requires understanding and quantification of historic subsidence, estimation of potential future subsidence, delineation of the risk for earth fissures that could impact infrastructure, and motivation and resources to continue monitoring through time. A successful monitoring system provides the means to measure ground deformation, grade changes, displacement, and anticipate and assess the potential for earth fissuring. Employing multiple methods, a monitoring strategy utilizes an integrated approach, including both regional and local measurements. Various methods implemented include conventional practices and proven, instrumented in-ground sensing systems. The conventional techniques include repeat optical levelling and global positioning system (GPS) surveys, ground reconnaissance, photo-geological analysis, groundwater monitoring, and tape-extensometers. Advanced techniques include the processing and interpretation of differential interferograms of repeat-pass, satellite-based synthetic aperture radar data (InSAR), borehole tiltmeters, microseismic arrays, excavation of monitoring trenches, and time-domain reflectometry (TDR).


Author(s):  
Jordan T. Camp

While many analysts have commented on the representation of 1968 campus events and antiwar demonstrations, less attention has been paid to the global significance of the dramatic struggles in industrial Detroit during the period. The meanings of events in the city were intensely fought over. As Stuart Hall, Chas Critcher, Tony Jefferson, John Clarke, and Brian Roberts observed, the events of 1968 were “an act of collective will, the breaks and ruptures stemming from the rapid expansion in the ideology, culture and civil structures of the new capitalism . . . in the form of a ‘crisis of authority.’” In Detroit the crisis of authority was expressed in the form of popular political struggles against racism, state violence, and the contradictions of life in the industrial capitalist city. This article asks and answers the following research questions about the struggle over the meaning of this decisive turning point in US history: What was the relationship between racial ordering, uneven capitalist development, and mass antiracist and class struggles? How did Black working-class organic intellectuals resist and alter hegemonic definitions of the situation? How are the dialectics of insurgency and counterinsurgency to be best theorized during this precise historical conjuncture? 


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4751 ◽  
Author(s):  
Sadra Karimzadeh ◽  
Masashi Matsuoka

In this study, we monitor pavement and land subsidence in Tabriz city in NW Iran using X-band synthetic aperture radar (SAR) sensor of Cosmo-SkyMed (CSK) satellites (2017–2018). Fifteen CSK images with a revisit interval of ~30 days have been used. Because of traffic jams, usually cars on streets do not allow pure backscattering measurements of pavements. Thus, the major paved areas (e.g., streets, etc.) of the city are extracted from a minimum-based stacking model of high resolution (HR) SAR images. The technique can be used profitably to reduce the negative impacts of the presence of traffic jams and estimate the possible quality of pavement in the HR SAR images in which the results can be compared by in-situ road roughness measurements. In addition, a time series small baseline subset (SBAS) interferometric SAR (InSAR) analysis is applied for the acquired HR CSK images. The SBAS InSAR results show land subsidence in some parts of the city. The mean rate of line-of-sight (LOS) subsidence is 20 mm/year in district two of the city, which was confirmed by field surveying and mean vertical velocity of Sentinel-1 dataset. The SBAS InSAR results also show that 1.4 km2 of buildings and 65 km of pavement are at an immediate risk of land subsidence.


2012 ◽  
Vol 19 (6) ◽  
pp. 675-683 ◽  
Author(s):  
K. Moghtased-Azar ◽  
A. Mirzaei ◽  
H. R. Nankali ◽  
F. Tavakoli

Abstract. Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT) was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180–218 days band (~6–7 months) from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena.


Sign in / Sign up

Export Citation Format

Share Document