scholarly journals What seismicity offshore Sicily suggests about lithosphere dynamics and microplate fragmentation models in the Central Mediterranean

2018 ◽  
Author(s):  
Giancarlo Neri ◽  
Cristina Totaro ◽  
Barbara Orecchio ◽  
Debora Presti

Abstract. We analyze an updated dataset of earthquakes of Southern Italy, focusing in particular on hypocenter locations and seismogenic stress distributions in the southern and eastearn offshores of Sicily, the two sectors of the study region where seismic and geodetic information needed for geodynamic modeling is still poor because of poor geometry of monitoring networks. Using Bayesian non-linear methods for hypocentral locations and hypocenter error estimates we improve the earthquake locations performed by more traditional linearized techniques, and this helps us to make significant progress in the interpretation of seismicity and seismogenic stress distributions especially where seismometric network geometry is more critical. Epicenter maps and hypocenter vertical sections, together with (i) best quality focal mechanisms coming from seismic waveform inversion and (ii) orientations of stress principal axes estimated by inversion of focal mechanisms, help us to better recognize geodynamic engines and plate margin deformation in the study area. NW-trending convergence between Africa and Eurasia is recognized as the main source of tectonic stress in the study region, producing clearly detectable signatures in terms of σ1 orientations also in the offshore sectors of the western Ionian and the Sicily Channel. Seismicity and seismogenic stress tensor highlight nearly uniform compressional dynamics related to plate convergence in the Sicily Channel, in contrast to rifting and microplate divergence proposed in that sector by other investigators. In the western Ionian, seismicity and stress inversion results reveal superposition of convergence-related compression and extensional dynamics. The latter, characterized by minimum compressive stress oriented SW-NE, can be related to a rifting process (opening SW-NE) hypothesized by previous investigators on the basis of marine geophysics analyses performed between the Alfeo-Etna and the Ionian Faults. The seismicity and seismogenic stress detected in the Western Ionian show that assumptions of microplate rigidity in this area made by previous workers when modeling poor geodetic data available can be inappropriate. Our findings indicate that more complex rheologic models should be adopted for reconstruction of tectonic deformation and microplate relative motions in the Central Mediterranean region.

2021 ◽  
Author(s):  
Simone Cesca ◽  
Carla Valenzuela Malebrán ◽  
José Ángel López-Comino ◽  
Timothy Davis ◽  
Carlos Tassara ◽  
...  

<p> A complex seismic sequence took place in 2014 at the Juan Fernández microplate, a small microplate located between Pacific, Nazca and Antarctica plates. Despite the remoteness of the study region and the lack of local data, we were able to resolve earthquake source parameters and to reconstruct the complex seismic sequence, by using modern waveform-based seismological techniques. The sequence started with an exceptional Mw 7.1-6.7 thrust – strike slip earthquake doublet, the first subevent being the largest earthquake ever recorded in the region and one of the few rare thrust earthquakes in a region otherwise characterized by normal faulting and strike slip earthquakes. The joint analysis of seismicity and focal mechanisms suggest the activation of E-W and NE-SW faults or of an internal curved pseudofault, which is formed in response to the microplate rotation, with alternation of thrust and strike-slip earthquakes. Seismicity migrated Northward in its final phase, towards the microplate edge, where a second doublet with uneven focal mechanisms occurred. The sequence rupture kinematics is well explained by Coulomb stress changes imparted by the first subevent. Our analysis show that compressional stresses, which have been mapped at the northern boundary of the microplate, but never accompanied by large thrust earthquakes, can be accommodated by the rare occurrence of large, impulsive, shallow thrust earthquakes, with a considerable tsunamigenic potential.</p>


Ocean Science ◽  
2011 ◽  
Vol 7 (4) ◽  
pp. 503-519 ◽  
Author(s):  
R. Sorgente ◽  
A. Olita ◽  
P. Oddo ◽  
L. Fazioli ◽  
A. Ribotti

Abstract. The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. The classical kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the permanent and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.


2021 ◽  
Author(s):  
Alina Polonia ◽  
Andrea Artoni ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini ◽  
...  

<p>Africa-Eurasia plate convergence and the retreat of the subducting slab led to the consumption of the Tethys ocean lithosphere, which has now mostly disappeared below or accreted/exhumed within the Alps/Apennines. Slab tearing plays a major role in plate boundary evolution, asthenospheric upwelling, dynamic topography and magmatism. However, the role played by structural inheritance on the Africa plate is not well constrained. Based on seismological, geodetic and marine geophysical data, we analyse the pattern of crustal deformation in the Calabrian Arc and Sicily Channel, two key regions to unravel the complex Africa/Eurasia plate interaction in the central Mediterranean Sea.</p><p>The Calabrian Arc subduction-rollback system accommodates Africa/Eurasia plate convergence along thrust faults developing both in the frontal and inner domains of the accretionary wedge. However, the most intriguing and tectonically active features are represented by arc-orthogonal faults deforming the subduction system along a complex strike-slip/transtensional pattern that may have been the source of major earthquakes in the Calabrian Arc. Deformation along the lithospheric transtensional faults is punctuated by buried sub-circular magnetized bodies aligned with Mt. Etna, that were interpreted as serpentinite/mud diapirs intruding the subduction system from the lower plate mantle. These faults are part of the overall dextral shear deformation, resulting from differences in Africa-Eurasia motion between the western and eastern sectors of the Tyrrhenian margin of northern Sicily, and accommodating diverging motions in the adjacent compartments of the Calabrian Arc. To the West, the Sicily Channel is part of the Pelagian block and experienced a lithospheric-scale continental rifting starting from the late Miocene with the development of NW-SE-trending tectonic depressions, bordered by crustal normal faults with variable throws. Our geophysical data, however, show that the most active tectonic feature in the area is a N-S trending and ~220-km-long lithospheric fault system characterized by volcanism, high heat flow and seismic activity. The NW-SE elongated rifting pattern, considered the first order structure in this region, appears currently inactive and sealed by undeformed Pleistocene deposits suggesting a recent change in structural development.</p><p>Seismological data show that the lithospheric boundaries present in the Calabrian Arc and Sicily Channel correlate well with spatial changes in the depth distribution of earthquakes and separate regions with different Moho depths and thickness of the seismogenic layer. We propose that these boundaries may represent long-lived inherited Mesozoic discontinuities controlling plate boundary evolution and neotectonics.</p>


Sign in / Sign up

Export Citation Format

Share Document