scholarly journals Geodynamic and seismotectonic model of a long-lived transverse structure: The Schio-Vicenza Fault System (NE Italy)

2021 ◽  
Author(s):  
Dario Zampieri ◽  
Paola Vannoli ◽  
Pierfrancesco Burrato

Abstract. We make a thorough review of geological and seismological data on the long-lived Schio-Vicenza Fault System (SVFS) in northern Italy and present for it a geodynamic and seismotectonic interpretation. The SVFS is a major and high angle structure transverse to the mean trend of the Eastern Southern Alps fold-and-thrust belt, and the knowledge of this structure is deeply rooted in the geological literature and spans for more than a century and a half. The main fault of the SVFS is the Schio-Vicenza Fault (SVF), which has a significant imprint in the landscape across the Eastern Southern Alps and the Veneto-Friuli foreland. The SVF can be divided into a northern segment, extending into the chain north of Schio and mapped up to the Adige Valley, and a southern one, coinciding with the SVF proper. The latter segment borders to the east the Lessini, Berici Mts. and Euganei Hills block, separating this foreland structural high from the Veneto-Friuli foreland, and continues southeastward beneath the recent sediments of the plain via the blind Conselve-Pomposa fault. The structures forming the SVFS have been active with different tectonic phases and different style of faulting at least since the Mesozoic, with a long-term dip-slip component of faulting well defined and, on the contrary, the horizontal component of the movement not well constrained. The SVFS interrupts the continuity of the Eastern Southern Alps thrust fronts in the Veneto sector, suggesting that it played a passive role in controlling the geometry of the active thrust belt and possibly the current distribution of seismic release. As a whole, apart from moderate seismicity along the northern segment and few geological observations along the southern one, there is little evidence to constrain the recent activity of the SVFS. In this context, the SVFS, and specifically its SVF strand, has been referred to as a sinistral strike-slip boundary of the northeastern Adriatic indenter. The review of the historical and instrumental seismicity along the SVFS shows that it does not appear to have generated large earthquakes during the last few hundred years. The moderate seismicity point to a dextral strike-slip activity, which is also corroborated by the field analysis of antithetic Riedel structures of the fault cropping out along the northern segment. Conversely, the southern segment shows geological evidence of sinistral strike-slip activity. The geological and seismological apparently conflicting data can be reconciled considering the faulting style of the southern segment as driven by the indentation of the Adriatic plate, while the opposite style along the northern segment can be explained in a sinistral opening "zipper" model, where intersecting pairs of simultaneously active faults with different sense of shear merge into a single fault system via a zippered section.

Solid Earth ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1967-1986
Author(s):  
Dario Zampieri ◽  
Paola Vannoli ◽  
Pierfrancesco Burrato

Abstract. We make a thorough review of geological and seismological data on the long-lived Schio-Vicenza Fault System (SVFS) in northern Italy and present for it a geodynamic and seismotectonic interpretation. The SVFS is a major and high-angle structure transverse to the mean trend of the eastern Southern Alps fold-and-thrust belt, and the knowledge of this structure is deeply rooted in the geological literature and spans more than a century and a half. The main fault of the SVFS is the Schio-Vicenza Fault (SVF), which has a significant imprint in the landscape across the eastern Southern Alps and the Veneto-Friuli foreland. The SVF can be divided into a northern segment, extending into the chain north of Schio and mapped up to the Adige Valley, and a southern one, coinciding with the SVF proper. The latter segment borders to the east the Lessini Mountains, Berici Mountains and Euganei Hills block, separating this foreland structural high from the Veneto-Friuli foreland, and continues southeastward beneath the recent sediments of the plain via the blind Conselve–Pomposa fault. The structures forming the SVFS have been active with different tectonic phases and different styles of faulting at least since the Mesozoic, with a long-term dip-slip component of faulting well defined and, on the contrary, the horizontal component of the movement not being well constrained. The SVFS interrupts the continuity of the eastern Southern Alps thrust fronts in the Veneto sector, suggesting that it played a passive role in controlling the geometry of the active thrust belt and possibly the current distribution of seismic release. As a whole, apart from moderate seismicity along the northern segment and few geological observations along the southern one, there is little evidence to constrain the recent activity of the SVFS. In this context, the SVFS, and specifically its SVF strand, has accommodated a different amount of shortening of adjacent domains of the Adriatic (Dolomites) indenter by internal deformation produced by lateral variation in strength, related to Permian–Mesozoic tectonic structures and paleogeographic domains. The review of the historical and instrumental seismicity along the SVFS shows that it does not appear to have generated large earthquakes during the last few hundred years. The moderate seismicity points to a dextral strike-slip activity, which is also corroborated by the field analysis of antithetic Riedel structures of the fault cropping out along the northern segment. Conversely, the southern segment shows geological evidence of sinistral strike-slip activity. The apparently conflicting geological and seismological data can be reconciled considering the faulting style of the southern segment as driven by the indentation of the Adriatic plate, while the opposite style along the northern segment can be explained in a sinistral opening “zipper” model, where intersecting pairs of simultaneously active faults with a different sense of shear merge into a single fault system.


2021 ◽  
Author(s):  
Duna Roda-Boluda ◽  
Taylor Schildgen ◽  
Hella Wittmann-Oelze ◽  
Stefanie Tofelde ◽  
Aaron Bufe ◽  
...  

<p>The Southern Alps of New Zealand are the expression of the oblique convergence between the Pacific and Australian plates, which move at a relative velocity of nearly 40 mm/yr. This convergence is accommodated by the range-bounding Alpine Fault, with a strike-slip component of ~30-40 mm/yr, and a shortening component normal to the fault of ~8-10 mm/yr. While strike-slip rates seem to be fairly constant along the Alpine Fault, throw rates appear to vary considerably, and whether the locus of maximum exhumation is located near the fault, at the main drainage divide, or part-way between, is still debated. These uncertainties stem from very limited data characterizing vertical deformation rates along and across the Southern Alps. Thermochronology has constrained the Southern Alps exhumation history since the Miocene, but Quaternary exhumation is hard to resolve precisely due to the very high exhumation rates. Likewise, GPS surveys estimate a vertical uplift of ~5 mm/yr, but integrate only over ~10 yr timescales and are restricted to one transect across the range.</p><p>To obtain insights into the Quaternary distribution and rates of exhumation of the western Southern Alps, we use new <sup>10</sup>Be catchment-averaged erosion rates from 20 catchments along the western side of the range. Catchment-averaged erosion rates span an order of magnitude, between ~0.8 and >10 mm/yr, but we find that erosion rates of >10 mm/yr, a value often quoted in the literature as representative for the entire range, are very localized. Moreover, erosion rates decrease sharply north of the intersection with the Marlborough Fault System, suggesting substantial slip partitioning. These <sup>10</sup>Be catchment-averaged erosion rates integrate, on average, over the last ~300 yrs. Considering that the last earthquake on the Alpine Fault was in 1717, these rates are representative of inter-seismic erosion. Lake sedimentation rates and coseismic landslide modelling suggest that long-term (~10<sup>3</sup> yrs) erosion rates over a full seismic cycle could be ~40% greater than our inter-seismic erosion rates. If we assume steady state topography, such a scaling of our <sup>10</sup>Be erosion rate estimates can be used to estimate rock uplift rates in the Southern Alps. Finally, we find that erosion, and hence potentially exhumation, does not seem to be localized at a particular distance from the fault, as some tectonic and provenance studies have suggested. Instead, we find that superimposed on the primary tectonic control, there is an elevation/temperature control on erosion rates, which is probably transient and related to frost-cracking and glacial retreat.</p><p>Our results highlight the potential for <sup>10</sup>Be catchment-averaged erosion rates to provide insights into the magnitude and distribution of tectonic deformation rates, and the limitations that arise from transient erosion controls related to the seismic cycle and climate-modulated surface processes.</p><p> </p><p> </p>


2018 ◽  
Author(s):  
Emanuela Falcucci ◽  
Maria Eliana Poli ◽  
Fabrizio Galadini ◽  
Giancarlo Scardia ◽  
Giovanni Paiero ◽  
...  

Abstract. We investigated the eastern corner of northeastern Italy, where the NW-SE trending dextral strike-slip fault systems of western Slovenia intersects the south-verging fold and thrust belt of the eastern Southern Alps . The area suffered the largest earthquakes of the region, among which are the 1511 (Mw 6.3) event and the two major shocks of the 1976 seismic sequence, with Mw = 6.4 and 6.1 respectively. The Colle Villano thrust and the Borgo Faris-Cividale strike-slip fault have been first analyzed by interpreting industrial seismic lines and then by performing morpho-tectonic and paleoseismological analyses. These different datasets indicate that the two structures define an active, coherent transpressive fault system that activated twice in the past two millennia, with the last event occurring around the 15th–17th century. The chronological information, and the location of the investigated fault system suggest its activation during the 1511 earthquake.


2011 ◽  
Vol 182 (4) ◽  
pp. 323-336 ◽  
Author(s):  
Christophe Larroque ◽  
Bertrand Delouis ◽  
Jean-Claude Hippolyte ◽  
Anne Deschamps ◽  
Thomas Lebourg ◽  
...  

AbstractThe lower Var valley is the only large outcropping zone of Plio-Quaternary terrains throughout the southwestern Alps. In order to assess the seismic hazard for the Alps – Ligurian basin junction, we investigated this area to provide a record of earthquakes that have recently occurred near the city of Nice. Although no historical seismicity has been indicated for the lower Var valley, our main objective was to identify traces of recent faulting and to discuss the seismogenic potential of any active faults. We organized multidisciplinary observations as a microseismic investigation (the PASIS survey), with morphotectonic mapping and imagery, and subsurface geophysical investigations. The results of the PASIS dense recording survey were disappointing, as no present-day intense microseismic activity was recorded. From the morphotectonic investigation of the lower Var valley, we revealed several morphological anomalies, such as drainage perturbations and extended linear anomalies that are unrelated to the lithology. These anomalies strike mainly NE-SW, with the major Saint-Sauveur – Donareo lineament, clearly related to faulting of the Plio-Pleistocene sedimentary series. Sub-surface geophysical investigation (electrical resistivity tomography profiling) imaged these faults in the shallow crust, and together with the microtectonic data, allow us to propose the timing of recent faulting in this area. Normal and left-lateral strike-slip faulting occurred several times during the Pliocene. From fault-slip data, the last episode of faulting was left-lateral strike-slip and was related to a NNW-SSE direction of compression. This direction of compression is consistent with the present-day state of stress and the Saint-Sauveur–Donareo fault might have been reactivated several times as a left-lateral fault during the Quaternary. At a regional scale, in the Nice fold-and-thrust belt, these data lead to a reappraisal of the NE-SW structural trends as the major potentially active fault system. We propose that the Saint-Sauveur–Donareo fault belongs to a larger system of faults that runs from near Villeneuve-Loubet to the southwest to the Vésubie valley to the north-east. The question of a structural connection between the Vésubie – Mt Férion fault, the Saint-Sauveur–Donareo fault and its possible extension offshore through the northern Ligurian margin is discussed.The Saint-Sauveur–Donareo fault shows two en-échelon segments that extend for about 8 km. Taking into account the regional seismogenic depth (about 10 km), this fault could produce M ~6 earthquakes if activated entirely during one event. Although a moderate magnitude generally yields a moderate seismic hazard, we suggest that this contribution to the local seismic risk is high, taking into account the possible shallow focal depth and the high vulnerability of Nice and the surrounding urban areas.


2001 ◽  
Vol 80 (3-4) ◽  
pp. 255-272 ◽  
Author(s):  
C. Larroque ◽  
N. Béthoux ◽  
E. Calais ◽  
F. Courboulex ◽  
A. Deschamps ◽  
...  

AbstractThe Southern Alps – Ligurian basin junction is one of the most active seismic areas in Western Europe countries. The topographic and the structural setting of this region is complex because of (i) its position between the high topography of the Southern Alps and the deep, narrow Ligurian oceanic basin, and (ii) the large number of structures inherited from the Alpine orogeny. Historical seismicity reveals about twenty moderate-size earthquakes (up to M=6.0), mostly distributed along the Ligurian coast and the Vésubie valley. A recent geodetic experiment shows a significant strain rate during the last 50 years in the area between the Argentera massif and the Mediterranean coastline. Results of this experiment suggest a N-S shortening of about 2-4 mm/yr over the network, this shortening direction is consistent with the seismological (P-axes of earthquakes) and the microtectonic data. The Pennic front (E-NE of the Argentera massif) and the northern Ligurian margin are the most seismically active areas. In the Nice arc and in the Argentera massif, some seismic lineaments correspond to faults identified in the field (such as theTaggia-Saorge fault or the Monaco-Sospel fault). In the western part of the Alpes Maritimes, no seismic activity is recorded in the Castellane arc. In the field, geological evidence, such as offsets of recent alluvial sediments, recent fault breccia, speleothem deformations, radon anomalies and others indicates recent deformation along these faults. Nevertheless, to this date active fault scarps have not been identified: this probably results from a relatively high erosion rate versus deformation rate and from the lack of Quaternary markers. We also suspect the presence of two hidden active faults, one in the lower Var valley (Nice city area) and the other one at the base of the Argentera crustal thrust-sheet. Offshore, along the northern Ligurian margin, the seismic reflection data shows traces of Quaternary extensional deformation, but the accuracy of the data does not yet allow the construction of a structural map nor does it allow the determination of the continuity between the offshore and onshore structures. From these data set we propose a preliminary map of 11 active faults and we discuss the questions which remain unsolved in the perspective of seismic hazard evaluations.


2020 ◽  
Vol 8 ◽  
Author(s):  
Tvrtko Korbar ◽  
Snježana Markušić ◽  
Ozren Hasan ◽  
Ladislav Fuček ◽  
Dea Brunović ◽  
...  

Active tectonics in long-lived orogenic belts usually manifests on the preexisting inherited structures. In the Kvarner region of the External Dinarides, an area with low-to-moderate seismicity related to the Adriatic microplate (Adria) northward movement, we deal with faults in predominantly carbonate rocks within tectonically complex NW-SE striking fold-and-thrust belt, which makes the identification and parametrization of the active structures challenging. Moreover, anthropogenic modifications greatly complicate access to the surface geological and geomorphological data. This paper demonstrates results of focused multidisciplinary research, from surface geological mapping and offshore shallow seismic surveys to earthquake focal mechanisms, as an active fault identification and parametrization kit, with a final goal to produce an across-methodological integrated model of the identified features in the future. Reverse, normal, and strike-slip orogen-parallel (longitudinal) to transverse faults were identified during geological mapping, but there is no clear evidence of their mutual relations and possible recent activity. The focal mechanisms calculated from the instrumental record include weak-to-moderate earthquakes and show solutions for all faulting types in the upper crust, compatible with the NE-SW oriented principal stress direction, with the stronger events favoring reverse and strike-slip faulting. The 3D spatial and temporal distribution of recent earthquake hypocenters indicate their clustering along predominantly subvertical transversal and steeply NE-dipping longitudinal planes. High-resolution shallow seismic geoacoustical survey (subbottom profiler) of the Quaternary sediments in the Rijeka Bay revealed local tectonic deformations of the stratified Late Pleistocene deposits that, along with overlaying mass-transport deposits, could imply prehistorical strong earthquake effects. Neotectonic faults onshore are tentatively recognized as highly fractured zones characterized by enhanced weathering, but there is no evidence for its recent activity. Thus, it seems that the active faults are blind and situated below the thin-skinned and highly deformed early-orogenic tectonic cover of the Adria. A strain accumulating deeper in the crust is probably irregularly redistributed near the surface along the preexisting fault network formed during the earlier phases of the Dinaric orogenesis. The results indicate a need for further multidisciplinary research that will contribute to a better seismic hazard assessment in the densely populated region that is also covered by strategic infrastructure.


2005 ◽  
Vol 42 (4) ◽  
pp. 573-597 ◽  
Author(s):  
Irvine R Annesley ◽  
Catherine Madore ◽  
Philippe Portella

In the Cree Lake Zone of northern Saskatchewan, reworked Archean orthogneisses are overlain by a highly deformed supracrustal sequence, the Paleoproterozoic Wollaston Group. This package of rocks was deformed and metamorphosed during the ca. 1.8 Ga continent–continent collision of the Trans-Hudson Orogen (THO), forming the Wollaston fold–thrust belt that underlies the eastern Athabasca Basin. The Hudsonian structural, metamorphic, and magmatic evolution of the Wollaston fold-thrust belt in the eastern Athabasca area involved six major stages. (1) Early collisional stage, DP1 at 1860–1835 Ma, involved burial of Wollaston Group metasediments from surface to depths equivalent to 3–5vkbar (1 kbar = 100 MPa) by thrust-pile stacking or imbrication tectonics, prograde metamorphism with garnet growth and development of early leucosomes, and emplacement of ca. 1840 Ma grey granite suite. (2) Collisional stage, DP2a at 1835–1820 Ma, involved continued deeper burial of Wollaston Group metasediments along a prograde P–T–t (pressure–temperature–time) path at depths equivalent to peak pressures of 6–9 kbar and approaching peak temperatures (750–825 °C), mafic magma underplating in the lower crust, initiation of large-scale crustal melting, emplacement of 1835–1820 Ma tholeiitic to calc-alkaline intrusions, and initiation of strike-slip tectonics. (3) Oblique collisional stage, DP2b at 1820–1805 Ma, involved strong transpressional tectonics with NE–SW shearing and NW–SE shortening, partitioned high-strain ductile flow, kilometre-scale fold development, initiation of exhumation, attainment of peak temperatures (750–825 °C), and essentially isothermal decompression with decompressional melting and intrusion of the main pulse of leucogranites and granitic pegmatites. (4) Late oblique collisional stage, DP3 at 1805–1775 Ma, caused development of amphibolite-facies dextral strike-slip shear zones and retrograde movement of older shear zones. It included apparent rotation of the main shortening axis and development of accommodation features due to vertical uplift (i.e., extension). (5) Post-collisional stage, DP4 at 1775–1760 Ma, involved continued localized adjustments along an essentially isobaric cooling path and produced NNE-trending, sinistral, oblique-slip reverse faults with reactivation of older shear zones. (6) Late post-collisional stage, DP5, produced north- to northwest-trending sinistral faults, including the Tabbernor fault system. Extension and tectonic extrusion during DP4 and DP5 were significant and resulted in orogenic collapse and formation of the Athabasca Basin at ca. 1750–1680 Ma.


2016 ◽  
Vol 153 (5-6) ◽  
pp. 1166-1191 ◽  
Author(s):  
KENN-MING YANG ◽  
RUEY-JUIN RAU ◽  
HAO-YUN CHANG ◽  
CHING-YUN HSIEH ◽  
HSIN-HSIU TING ◽  
...  

AbstractIn the foreland area of western Taiwan, some of the pre-orogenic basement-involved normal faults were reactivated during the subsequent compressional tectonics. The main purpose of this paper is to investigate the role played by the pre-existing normal faults in the recent tectonics of western Taiwan. In NW Taiwan, reactivated normal faults with a strike-slip component have developed by linkage of reactivated single pre-existing normal faults in the foreland basin and acted as transverse structures for low-angle thrusts in the outer fold-and-thrust belt. In the later stage of their development, the transverse structures were thrusted and appear underneath the low-angle thrusts or became tear faults in the inner fold-and-thrust belt. In SW Taiwan, where the foreland basin is lacking normal fault reactivation, the pre-existing normal faults passively acted as ramp for the low-angle thrusts in the inner fold-and-thrust belt. Some of the active faults in western Taiwan may also be related to reactivated normal faults with right-lateral slip component. Some main earthquake shocks related to either strike-slip or thrust fault plane solution occurred on reactivated normal faults, implying a relationship between the pre-existing normal fault and the triggering of the recent major earthquakes. Along-strike contrast in structural style of normal fault reactivation gives rise to different characteristics of the deformation front for different parts of the foreland area in western Taiwan. Variations in the degree of normal fault reactivation also provide some insights into the way the crust embedding the pre-existing normal faults deformed in response to orogenic contraction.


Solid Earth ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 911-922 ◽  
Author(s):  
Emanuela Falcucci ◽  
Maria Eliana Poli ◽  
Fabrizio Galadini ◽  
Giancarlo Scardia ◽  
Giovanni Paiero ◽  
...  

Abstract. We investigated the eastern corner of northeastern Italy, where a system of NW–SE-trending dextral strike-slip faults of western Slovenia intersects the south-verging fold and thrust belt of the eastern Southern Alps. The area suffered the largest earthquakes of the region, among which are the 1511 (Mw 6.3) event and the two major shocks of the 1976 seismic sequence, with Mw = 6.4 and 6.1. The Colle Villano thrust and the Borgo Faris–Cividale strike-slip fault have been here first analyzed by interpreting industrial seismic lines and then by performing morphotectonic and paleoseismological analyses. These different datasets indicate that the two structures define an active, coherent transpressive fault system that was activated twice in the past two millennia, with the last event occurring around the 15th–17th century. The chronological information and the location of the investigated fault system suggest its activation during the 1511 earthquake.


Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 254
Author(s):  
Ali Yaghoubi ◽  
SeyedBijan Mahbaz ◽  
Maurice B. Dusseault ◽  
Yuri Leonenko

This study focuses on determining the orientation and constraining the magnitude of present-day stresses in the Dezful Embayment in Iran’s Zagros Fold and Thrust Belt. Two datasets are used: the first includes petrophysical data from 25 wells (3 to 4 km deep), and the second contains 108 earthquake focal mechanisms, mostly occurring in blind active basement faults (5 to 20 km deep). Formal stress inversion analysis of the focal mechanisms demonstrates that there is currently a compressional stress state ( in the basement. The seismologically determined SHmax direction is 37° ± 10°, nearly perpendicular to the strike of most faults in the region. However, borehole geomechanics analysis using rock strength and drilling evidence leads to the counterintuitive result that the shallow state of stress is a normal/strike-slip regime. These results are consistent with the low seismicity level in the sedimentary cover in the Dezful Embayment, and may be evidence of stress decoupling due to the existence of salt layers. The stress state situation in the field was used to identify the optimally oriented fault planes and the fault friction coefficient. This finding also aligns with the prediction Coulomb faulting theory in that the N-S strike-slip basement Kazerun Fault System has an unfavorable orientation for slip in a reverse fault regime with an average SW-NE SHmax orientation. These results are useful for determining the origin of seismic activity in the basin and better assessing fault-associated seismic hazards in the area.


Sign in / Sign up

Export Citation Format

Share Document