scholarly journals Impact of the addition of different plant residues on nitrogen mineralization–immobilization turnover and carbon content of a soil incubated under laboratory conditions

Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 197-205 ◽  
Author(s):  
M. Kaleeem Abbasi ◽  
M. Mahmood Tahir ◽  
N. Sabir ◽  
M. Khurshid

Abstract. Application of plant residues as soil amendment may represent a valuable recycling strategy that affects carbon (C) and nitrogen (N) cycling in soil–plant systems. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water-filled pore space) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues, i.e., the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata, incorporated into the soil at the rate of 200 mg residue N kg−1 soil. The diverse plant residues showed a wide variation in total N, C, lignin, polyphenols and C / N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of Glycine max and the shoot and root of Trifolium repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg−1 and representing a 55, 37 and 36% recovery of N that had been released from these added resources. The roots of Glycine max and Zea mays and the shoot of Zea mays showed continuous negative values throughout the incubation. After an initial immobilization, leaves of Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg−1, respectively, and representing a 16, 32 and 33% N recovery, respectively. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01) and negatively correlated with lignin content (r = −0.84; p ≤ 0.01), C / N ratio (r = −0.69; p ≤ 0.05), lignin / N ratio (r = −0.68; p ≤ 0.05), polyphenol / N ratio (r = −0.73; p ≤ 0.05) and (lignin + polyphenol) : N ratio (r = −0.70; p ≤ 0.05) indicating a significant role of residue chemical composition and quality in regulating N transformations and cycling in soil. The present study indicates that incorporation of plant residues strongly modifies the mineralization–immobilization turnover (MIT) of soil that can be taken into account to develop synchronization between net N mineralization and crop demand in order to maximize N delivery and minimize N losses.

2014 ◽  
Vol 6 (2) ◽  
pp. 3051-3074 ◽  
Author(s):  
M. K. Abbasi ◽  
M. M. Tahir ◽  
N. Sabir ◽  
M. Khurshid

Abstract. Application of plant residues as soil amendment may represent a valuable recycling strategy that affects on carbon (C) and nitrogen (N) cycling, soil properties improvement and plant growth promotion. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water filled pore space (WFPS)) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues i.e. the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Poplus euramericana, Rubinia pseudoacacia and Elagnus umbellate incorporated into the soil at the rate of 200 mg residue N kg−1 soil. The diverse plant residues showed wide variation in total N, carbon, lignin, polyphenols and C/N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of G. max and the shoot and root of T. repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg−1 and representing a 55, 37 and 36% of added N being released from these resources. The roots of G. max and Z. mays and the shoot of Z. mays showed continuous negative values throughout the incubation showing net immobilization. After an initial immobilization, leaves of P. euramericana, R. pseudoacacia and E. umbellate exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg−1, respectively and representing a 16, 32 and 33% of added N being released. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01), and negatively correlated with lignin content (r = −0.84; p ≤ 0.01), C/N ratio (r = −0.69; p ≤ 0.05), lignin/N ratio (r = −0.68; p ≤ 0.05), polyphenol/N ratio (r = −0.73; p ≤ 0.05) and ligin + polyphenol/N ratio (r = −0.70; p ≤ 0.05) indicating a significant role of residue chemical composition and quality in regulating N transformations and cycling in soil. The present study indicates that incorporation of plant residues strongly modify the mineralization-immobilization turnover (MIT) of soil that can be taken into account to develop synchronization between net N mineralization and crop demand in order to maximize N delivery and minimize N losses.


2011 ◽  
Vol 47 (4) ◽  
pp. 243-246 ◽  
Author(s):  
Elaheh Vahdat ◽  
Farshid Nourbakhsh ◽  
Mehdi Basiri

Weed Science ◽  
1980 ◽  
Vol 28 (2) ◽  
pp. 229-233 ◽  
Author(s):  
Dirk C. Drost ◽  
Jerry D. Doll

Four greenhouse experiments were conducted to study the effects of plant residues and extracts of yellow nutsedge (Cyperus esculentusL.) plant residues on the growth of corn (Zea maysL.) and soybeans [Glycine max(L.) Merr.]. At equal concentrations, tuber residues reduced the dry weight of corn and soybeans more than foliage residues. As the concentration increased, growth decreased, affecting soybeans more than corn. Soybean growth was significantly reduced by the addition of tuber extracts. At a constant residue concentration, increasing the percentage of sand in the soil mixture reduced the growth of corn and soybeans. Growth inhibition was greatest when tuber residues were in contact with the corn or soybean seed. We conclude that extracts and residues of yellow nutsedge have an allelopathic effect on corn and soybeans under greenhouse conditions.


2018 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Rosileyde Golçalves Siqueira Cardoso ◽  
Adriene Woods Pedrosa ◽  
Mateus Cupertino Rodrigues ◽  
Ricardo Henrique Silva Santos ◽  
Paulo Roberto Cecon ◽  
...  

The knowledge about the rate of decomposition and nitrogen mineralization of green manures provides synchronization with the higher absorption stage by the coffee tree. The rate of decomposition and nitrogen mineralization varies according to the species of green manure and with the environmental factors. The aim of the present study was to evaluate the decomposition and nitrogen mineralization of two green manures intercropped with coffee trees for three different periods. The experiment was divided into two designs for statistical analysis, one referring to the characterization of plant material (fresh mass, dry matter, dry matter content, nitrogen concentration and accumulation in the jack bean (Canavalia ensiformis) and hyacinth bean (Dolichos lablab) and another to evaluate the rate of decomposition and N mineralization of these species. The decomposition rate decreased in both species as their growth time increased in the field. The decomposition was influenced by the phenology of green manures. Nitrogen mineralization of the jack bean decreased as the growth period in the field increased and was faster than hyacinth bean only when cut at 60 days. The N mineralization was slower than mass decomposition in both species.


1990 ◽  
Vol 124 (2) ◽  
pp. 175-182 ◽  
Author(s):  
A. Jungk ◽  
C. J. Asher ◽  
D. G. Edwards ◽  
D. Meyer

1998 ◽  
Vol 22 (2) ◽  
pp. 311-317 ◽  
Author(s):  
I. F. Silva ◽  
J. Mielniczuk

Em um Latossolo Roxo de Santo Ângelo (RS), e em um Podzólico Vermelho-Escuro de Eldorado do Sul (RS), ambos com textura argilosa, submetidos o primeiro à exploração com cultivo convencional de trigo (Triticum aestivum L.) e soja (Glycine max L.) e sob setária (Setaria anceps L.), e o segundo à exploração com capim-pangola (Digitaria decumbens L.), siratro (Macroptilium atropurpureum L.), plantio direto com aveia (Avena bizantina L.)/milho (Zea mays L.) e área sem vegetação, foi realizado o presente trabalho durante a safra de verão (1990/1991), com o objetivo de avaliar a estabilidade e a agregação do solo sob diferentes sistemas de cultivo. Constatou-se, nessa avaliação, que as gramíneas perenes por meio do seu sistema radicular tiveram grande efeito na agregação e estabilidade dos agregados do solo e que os teores de carbono orgânico, de ferro e alumínio-oxalato, argila e grau de dispersão tiveram também efeitos na agregação do solo, porém insuficientes para explicar as variações entre o diâmetro médio ponderado dos agregados sob os diferentes sistemas de cultivo.


2000 ◽  
Vol 80 (2) ◽  
pp. 271-276 ◽  
Author(s):  
T. Paré ◽  
H. Dinel ◽  
M. Schnitzer

The recycling of poultry (Gallus gallus domesticus) manure (PM) needs to be done in a manner that will not only improve soil physical, chemical and biological properties but also minimize environmental risks. Untreated PM is more difficult to handle and more expensive to apply than granular fertilizers; the application of PM in the form of tablets may be a suitable alternative. It is necessary to determine whether C and N mineralization in tabletized PM (T-PM) differs from non-tabletized PM (NT-PM). Net C and N mineralization from a Brandon loam soil (Typic Endoaquoll) amended with NT-PM and T-PM, were measured in an incubation study at 25 °C. After 60 d of incubation, about 62 and 77% of total PM carbon was mineralized in NT-PM and T-PM amended soils, respectively. Carbon mineralization was not stimulated by the addition of PM tablets containing NPK to soil, while in soils mixed with NT-PM + NPK, soil respiration was reduced. Net N mineralization was similar in soils amended with T-PM and NT-PM, although changes in ammonium (NH4+–N) concentrations during incubation differed. Generally more NH4+–N accumulated in soil amended with T-PM and T-PM + NPK than with NT-PM and NT-PM + NPK The concentrations of nitrate (NO3−–N) did not differ in soils amended with T-PM and NT-PM, indicating a reduction in nitrification and NH4+–N accumulation in soils amended with PM tablets. Key words: Poultry manure, tablets, carbon mineralization, nitrogen mineralization, organic fertilizer


Sign in / Sign up

Export Citation Format

Share Document