scholarly journals Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of a restless caldera

Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 557-577 ◽  
Author(s):  
A. Coco ◽  
J. Gottsmann ◽  
F. Whitaker ◽  
A. Rust ◽  
G. Currenti ◽  
...  

Abstract. Ground deformation and gravity changes in restless calderas during periods of unrest can signal an impending eruption and thus must be correctly interpreted for hazard evaluation. It is critical to differentiate variation of geophysical observables related to volume and pressure changes induced by magma migration from shallow hydrothermal activity associated with hot fluids of magmatic origin rising from depth. In this paper we present a numerical model to evaluate the thermo-poroelastic response of the hydrothermal system in a caldera setting by simulating pore pressure and thermal expansion associated with deep injection of hot fluids (water and carbon dioxide). Hydrothermal fluid circulation is simulated using TOUGH2, a multicomponent multiphase simulator of fluid flows in porous media. Changes in pore pressure and temperature are then evaluated and fed into a thermo-poroelastic model (one-way coupling), which is based on a finite-difference numerical method designed for axi-symmetric problems in unbounded domains.Informed by constraints available for the Campi Flegrei caldera (Italy), a series of simulations assess the influence of fluid injection rates and mechanical properties on the hydrothermal system, uplift and gravity. Heterogeneities in hydrological and mechanical properties associated with the presence of ring faults are a key determinant of the fluid flow pattern and consequently the geophysical observables. Peaks (in absolute value) of uplift and gravity change profiles computed at the ground surface are located close to injection points (namely at the centre of the model and fault areas). Temporal evolution of the ground deformation indicates that the contribution of thermal effects to the total uplift is almost negligible with respect to the pore pressure contribution during the first years of the unrest, but increases in time and becomes dominant after a long period of the simulation. After a transient increase over the first years of unrest, gravity changes become negative and decrease monotonically towards a steady-state value.Since the physics of the investigated hydrothermal system is similar to any fluid-filled reservoir, such as oil fields or CO2 reservoirs produced by sequestration, the generic formulation of the model will allow it to be employed in monitoring and interpretation of deformation and gravity data associated with other geophysical hazards that pose a risk to human activity.

2015 ◽  
Vol 7 (3) ◽  
pp. 2055-2107 ◽  
Author(s):  
A. Coco ◽  
J. Gottsmann ◽  
F. Whitaker ◽  
A. Rust ◽  
G. Currenti ◽  
...  

Abstract. Ground deformation and gravity changes in active calderas during periods of unrest can signal an impending eruption and thus must be correctly interpreted for hazard evaluation. It is critical to differentiate variation of geophysical observables related to volume and pressure changes induced by magma migration from shallow hydrothermal activity associated with hot fluids of magmatic origin rising from depth. In this paper we present a numerical model to evaluate the thermo-poroelastic response of the hydrothermal system in a caldera setting by simulating pore pressure and thermal expansion associated with deep injection of hot fluids (water and carbon dioxide). Hydrothermal fluid circulation is simulated using TOUGH2, a multicomponent multiphase simulator of fluid flows in porous media. Changes in pore pressure and temperature are then evaluated and fed into a thermo-poroelastic model (one-way coupling), which is based on a finite-difference numerical method designed for axi-symmetric problems in unbounded domains. Based on data for the Campi Flegrei caldera (Italy), a series of simulations assess the influence of fluid injection rates and mechanical properties on the hydrothermal system, uplift and gravity. Heterogeneities in hydrological and mechanical properties associated with the presence of ring faults are a key determinant of the fluid flow pattern and consequently the geophysical observables. Peaks (in absolute value) of uplift and gravity change profiles computed at the ground surface are located close to injection points (namely at the centre of the model and fault areas). Temporal evolution of the ground deformation indicates that the contribution of thermal effects to the total uplift is almost negligible with respect to the pore pressure contribution during the first years of the unrest, but increases in time and becomes dominant after a long period of the simulation. After a transient increase over the first years of unrest, gravity changes become negative and decrease monotonically towards a steady state value. Since the physics of the investigated hydrothermal system is similar to any fluid-filled reservoir, such as oil fields or CO2 reservoirs produced by sequestration, the generic formulation of the model will allow it to be employed in monitoring and interpretation of deformation and gravity data associated with other geophysical hazards that pose a risk to human activity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Micol Todesco

Ground deformation at Campi Flegrei has fuelled a long-term scientific debate about its driving mechanism and its significance in hazard assessment. In an active volcanic system hosting a wide hydrothermal circulation, both magmatic and hydrothermal fluids could be responsible, to variable degrees, for the observed ground displacement. Fast and large uplifts are commonly interpreted in terms of pressure or volume changes associated with magma intrusion, while minor, slower displacement can be related to shallower sources. This work focuses on the deformation history of the last 35 years and shows that ground deformation measured at Campi Flegrei since 1985 is consistent with a poroelastic response of a shallow hydrothermal system to changes in pore pressure and fluid content. The extensive literature available for Campi Flegrei allows constraining system geometry, properties, and conditions. Changes in pore pressure and fluid content necessary to cause the observed deformation can then be calculated based on the linear theory of poroelasticity. The predicted pore pressure evolution and fluid fluxes are plausible and consistent with available measurements and independent estimates.


Geosciences ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 370 ◽  
Author(s):  
Panara ◽  
Toscani ◽  
Cooke ◽  
Seno ◽  
Perotti

Coseismic ground displacements detected through remote sensing surveys are often used to invert the coseismic slip distribution on geologically reliable fault planes. We analyze a well-known case study (2009 L’Aquila earthquake) to investigate how three-dimensional (3D) slip configuration affects coseismic ground surface deformation. Different coseismic slip surface configurations reconstructed using aftershocks distribution and coseismic cracks, were tested using 3D boundary element method numerical models. The models include two with slip patches that reach the surface and three models of blind normal-slip surfaces with different configurations of slip along shallowly-dipping secondary faults. We test the sensitivity of surface deformation to variations in stress drop and rock stiffness. We compare numerical models’ results with line of sight (LOS) surface deformation detected from differential SAR (Synthetic Aperture Radar) interferometry (DInSAR). The variations in fault configuration, rock stiffness and stress drop associated with the earthquake considerably impact the pattern of surface subsidence. In particular, the models with a coseismic slip patch that does not reach the surface have a better match to the line of sight coseismic surface deformation, as well as better match to the aftershock pattern, than models with rupture that reaches the surface. The coseismic slip along shallowly dipping secondary faults seems to provide a minor contribution toward surface deformation.


2020 ◽  
Author(s):  
Nicușor Necula ◽  
Kami Mohammadi ◽  
Mostafa Khoshmanesh ◽  
Domniki Asimaki

<p>As urbanized areas increasingly expand into mountainous terrains and climate change accentuates extreme weather conditions (rainfall or drought), slow-moving landslides increasingly threaten the resilience of infrastructure systems. Referred to as creeping landslides, these features may appear benign but can abruptly turn into catastrophic failures and debris flows during heavy rainfall or an earthquake. Because of the spatial extent and time evolution of ground deformation risk, conventional observation techniques such as site surveying, that rely on human resource availability and involve safety considerations, cannot be used to identify precursors of impending failures. Instead, remote sensing techniques for landslide monitoring such as differential SAR Interferometry (DInSAR) allow the spatiotemporal retrieval of surface changes with millimeter accuracy. We here test the reliability of repeat-pass interferometry techniques coupled with numerical models of creep to quantify the time-dependent deformations of a landslide in the Bel Air district of Los Angeles, USA. We validate our measurements and predictions by comparison with in-situ deformation profiles, and provide detailed representations of ground surface and subsurface displacements, along with the relationship between environmental factors and material properties. The wealth of in-situ measurements and site characterization data at the site improves our understanding of deformation precursors that can be used to minimize the risk posed to communities by slow-moving landslides.</p>


Author(s):  
Antonio Maria D’Altri ◽  
Francesco Cannizzaro ◽  
Massimo Petracca ◽  
Diego Alejandro Talledo

AbstractIn this paper, a simple and practitioners-friendly calibration strategy to consistently link target panel-scale mechanical properties (that can be found in national standards) to model material-scale mechanical properties is presented. Simple masonry panel geometries, with various boundary conditions, are utilized to test numerical models and calibrate their mechanical properties. The calibration is successfully conducted through five different numerical models (most of them available in commercial software packages) suitable for nonlinear modelling of masonry structures, using nonlinear static analyses. Firstly, the panel stiffness calibration is performed, focusing the attention to the shear stiffness. Secondly, the panel strength calibration is conducted for several axial load ratios by attempts using as reference the target panel strength deduced by well-known analytical strength criteria. The results in terms of panel strength for the five different models show that this calibration strategy appears effective in obtaining model properties coherent with Italian National Standard and Eurocode. Open issues remain for the calibration of the post-peak response of masonry panels, which still appears highly conventional in the standards.


2018 ◽  
Author(s):  
Nicholas J. Roberts ◽  
Bernhard T. Rabus ◽  
John J. Clague ◽  
Reginald L. Hermanns ◽  
Marco-Antonio Guzmán ◽  
...  

Abstract. We characterize and compare creep preceding and following the 2011 Pampahasi landslide (∼ 40 Mm3 ± 50 %) in the city of La Paz, Bolivia, using spaceborne RADAR interferometry (InSAR) that combines displacement records from both distributed and point scatterers. The failure remobilised deposits of an ancient landslide in weakly cemented, predominantly fine-grained sediments and affected ∼ 1.5 km2 of suburban development. During the 30 months preceding failure, about half of the toe area was creeping at 3–8 cm/a and localized parts of the scarp area showed displacements of up to 14 cm/a. Changes in deformation in the 10 months following the landslide are contrary to the common assumption that stress released during a discrete failure increases stability. During that period, most of the landslide toe and areas near the headscarp accelerated, respectively, to 4–14 and 14 cm/a. The extent of deformation increased to cover most, or probably all, of the 2011 landslide as well as adjacent parts of the slope and plateau above. The InSAR-measured displacement patterns – supplemented by field observations and by optical satellite images – indicate that kinematically complex, steady-state creep along pre-existing sliding surfaces temporarily accelerated in response to heavy rainfall, after which the slope quickly achieved a slightly faster and expanded steadily creeping state. This case study demonstrates that high-quality ground-surface motion fields derived using spaceborne InSAR can help to characterize creep mechanisms, quantify spatial and temporal patterns of slope activity, and identify isolated small-scale instabilities. Characterizing slope instability before, during, and after the 2011 Pampahasi landslide is particularly important for understanding landslide hazard in La Paz, half of which is underlain by similar, large paleolandslides.


2021 ◽  
Vol 8 (5) ◽  
pp. 70
Author(s):  
Marco Ferroni ◽  
Beatrice Belgio ◽  
Giuseppe M. Peretti ◽  
Alessia Di Giancamillo ◽  
Federica Boschetti

The menisci of the knee are complex fibro-cartilaginous tissues that play important roles in load bearing, shock absorption, joint lubrication, and stabilization. The objective of this study was to evaluate the interaction between the different meniscal tissue components (i.e., the solid matrix constituents and the fluid phase) and the mechanical response according to the developmental stage of the tissue. Menisci derived from partially and fully developed pigs were analyzed. We carried out biochemical analyses to quantify glycosaminoglycan (GAG) and DNA content according to the developmental stage. These values were related to tissue mechanical properties that were measured in vitro by performing compression and tension tests on meniscal specimens. Both compression and tension protocols consisted of multi-ramp stress–relaxation tests comprised of increasing strains followed by stress–relaxation to equilibrium. To better understand the mechanical response to different directions of mechanical stimulus and to relate it to the tissue structural composition and development, we performed numerical simulations that implemented different constitutive models (poro-elasticity, viscoelasticity, transversal isotropy, or combinations of the above) using the commercial software COMSOL Multiphysics. The numerical models also allowed us to determine several mechanical parameters that cannot be directly measured by experimental tests. The results of our investigation showed that the meniscus is a non-linear, anisotropic, non-homogeneous material: mechanical parameters increase with strain, depend on the direction of load, and vary among regions (anterior, central, and posterior). Preliminary numerical results showed the predominant role of the different tissue components depending on the mechanical stimulus. The outcomes of biochemical analyses related to mechanical properties confirmed the findings of the numerical models, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. During maturation, the increase in compressive moduli could be explained by cell differentiation from fibroblasts to metabolically active chondrocytes, as indicated by the found increase in GAG/DNA ratio. The changes of tensile mechanical response during development could be related to collagen II accumulation during growth. This study provides new information on the changes of tissue structural components during maturation and the relationship between tissue composition and mechanical response.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Tramelli ◽  
C. Godano ◽  
P. Ricciolino ◽  
F. Giudicepietro ◽  
S. Caliro ◽  
...  

AbstractThe knowledge of the dynamic of the Campi Flegrei calderic system is a primary goal to mitigate the volcanic risk in one of the most densely populated volcanic areas in the world. From 1950 to 1990 Campi Flegrei suffered three bradyseismic crises with a total uplift of 4.3 m. After 20 years of subsidence, the uplift started again in 2005 accompained by a low increment of the seismicity rate. In 2012 an increment in the seismic energy release and a variation in the gas composition of the fumaroles of Solfatara (in the central area of the caldera) were recorded. Since then, a slow and progressive increase in phenomena continued until today. We analyze the INGV - Osservatorio Vesuviano seismic catalogue of Campi Flegrei from 2000 to 2020 in order to look for any variation in the seismic parameters and compare them with geochemical monitored ones. A remarkable correlation between independent variables of earthquake cumulative number, CO/CO2 values and vertical ground deformation reveals a likely common origin. Moreover the correlation between all the variables here analysed enlightens that the same origin can cause the temporal behavior of all these variables. We interpret the seismological, geochemical and geodetic observable in terms of the injection of magmatic fluids into the hydrothermal system or its pressurization.


2017 ◽  
Vol 10 (2) ◽  
pp. 477-508 ◽  
Author(s):  
C. F.R. SANTOS ◽  
R. C. S. S. ALVARENGA ◽  
J. C. L. RIBEIRO ◽  
L. O CASTRO ◽  
R. M. SILVA ◽  
...  

Abstract This work developed experimental tests and numerical models able to represent the mechanical behavior of prisms made of ordinary and high strength concrete blocks. Experimental tests of prisms were performed and a detailed micro-modeling strategy was adopted for numerical analysis. In this modeling technique, each material (block and mortar) was represented by its own mechanical properties. The validation of numerical models was based on experimental results. It was found that the obtained numerical values of compressive strength and modulus of elasticity differ by 5% from the experimentally observed values. Moreover, mechanisms responsible for the rupture of the prisms were evaluated and compared to the behaviors observed in the tests and those described in the literature. Through experimental results it is possible to conclude that the numerical models have been able to represent both the mechanical properties and the mechanisms responsible for failure.


Sign in / Sign up

Export Citation Format

Share Document