scholarly journals Neoproterozoic and post-Caledonian exhumation and shallow faulting in NW Finnmark from K–Ar dating and <i>p</i>∕<i>T</i> analysis of fault rocks

Solid Earth ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 923-951 ◽  
Author(s):  
Jean-Baptiste P. Koehl ◽  
Steffen G. Bergh ◽  
Klaus Wemmer

Abstract. Well-preserved fault gouge along brittle faults in Paleoproterozoic, volcano-sedimentary rocks of the Raipas Supergroup exposed in the Alta–Kvænangen tectonic window in northern Norway yielded latest Mesoproterozoic (approximately 1050 ± 15 Ma) to mid-Neoproterozoic (approximately 825–810 ± 18 Ma) K–Ar ages. Pressure–temperature estimates from microtextural and mineralogy analyses of fault rocks indicate that brittle faulting may have initiated at a depth of 5–10 km during the opening of the Asgard Sea in the latest Mesoproterozoic–early Neoproterozoic (approximately 1050–945 Ma) and continued with a phase of shallow faulting to the opening of the Iapetus Ocean–Ægir Sea and the initial breakup of Rodinia in the mid-Neoproterozoic (approximately 825–810 Ma). The predominance and preservation of synkinematic smectite and subsidiary illite in cohesive and non-cohesive fault rocks indicate that Paleoproterozoic basement rocks of the Alta–Kvænangen tectonic window remained at shallow crustal levels (< 3.5 km) and were not reactivated since mid-Neoproterozoic times. Slow exhumation rate estimates for the early–mid-Neoproterozoic (approximately 10–75 m Myr−1) suggest a period of tectonic quiescence between the opening of the Asgard Sea and the breakup of Rodinia. In the Paleozoic, basement rocks in NW Finnmark were overthrusted by Caledonian nappes along low-angle thrust detachments during the closing of the Iapetus Ocean–Ægir Sea. K–Ar dating of non-cohesive fault rocks and microtexture mineralogy of cohesive fault rock truncating Caledonian nappe units show that brittle (reverse) faulting potentially initiated along low-angle Caledonian thrusts during the latest stages of the Caledonian Orogeny in the Silurian (approximately 425 Ma) and was accompanied by epidote–chlorite-rich, stilpnomelane-bearing cataclasite (type 1) indicative of a faulting depth of 10–16 km. Caledonian thrusts were inverted (e.g., Talvik fault) and later truncated by high-angle normal faults (e.g., Langfjorden–Vargsundet fault) during subsequent, late Paleozoic, collapse-related widespread extension in the Late Devonian–early Carboniferous (approximately 375–325 Ma). This faulting period was accompanied by quartz- (type 2), calcite- (type 3) and laumontite-rich cataclasites (type 4), whose cross-cutting relationships indicate a progressive exhumation of Caledonian rocks to zeolite-facies conditions (i.e., depth of 2–8 km). An ultimate period of minor faulting occurred in the late Carboniferous–mid-Permian (315–265 Ma) and exhumed Caledonian rocks to shallow depth at 1–3.5 km. Alternatively, late Carboniferous (?) to early–mid-Permian K–Ar ages may reflect late Paleozoic weathering of the margin. Exhumation rates estimates indicate rapid Silurian–early Carboniferous exhumation and slow exhumation in the late Carboniferous–mid-Permian, supporting decreasing faulting activity from the mid-Carboniferous. NW Finnmark remained tectonically quiet in the Mesozoic–Cenozoic.

2018 ◽  
Author(s):  
Jean-Baptiste P. Koehl ◽  
Steffen G. Bergh ◽  
Klaus Wemmer

Abstract. Well-preserved fault gouge along brittle faults in Paleoproterozoic, volcano-sedimentary rocks of the Raipas Group exposed in the Alta-Kvænangen tectonic window in northern Norway yielded latest Mesoproterozoic (ca. 1050 ± 15 Ma) to mid Neoproterozoic (ca. 825–810 ± 18 Ma) K/Ar ages. Pressure-temperature estimates from microtextural and mineralogy analyses of fault-rocks indicate that brittle faulting may have initiated at depth of 5–10 km during the opening of the Asgard Sea in the latest Mesoproterozoic-early Neoproterozoic (ca. 1050–945 Ma), and continued with a phase of shallow faulting during to the opening of the Iapetus Ocean-Ægir Sea and the initial breakup of Rodinia in the mid Neoproterozoic (ca. 825–810 Ma). The predominance and preservation of synkinematic smectite and subsidiary illite in cohesive and non-cohesive fault-rocks indicate that Paleoproterozoic basement rocks of the Alta-Kvænangen tectonic window remained at shallow crustal levels (


2017 ◽  
Vol 50 (1) ◽  
pp. 34 ◽  
Author(s):  
E. Katrivanos ◽  
A. Kilias ◽  
D. Mountrakis

Paikon and Tzena terranes are situated in the centre part of Axios zone, between Almopia and Paionia ophiolitic belts. Tectonostratigraphic data reveal that both have been affected by the same polyphase deformation and metamorphism, as well that they have the same lithostratigraphic column. The first deformation phase took place during the Middle to Late Jurassic and is associated with ophiolite obduction, nappe- stacking, terrane accretion and crustal thickening (D1). Metamorphism does not exceed greenschist facies (M1). Relict HP-LT metamorphic assemblages predating M1 metamorphism are possibly developed during subduction processes and overloading of the obducted ophiolites on the continental margin, characterized the initial stages of deformation. Compressional tectonics and intense thrusting with the same kinematics continued in Lower Cretaceous time, affected all pre-Upper Cretaceous units and the obducted ophiolites (D2). This phase is associated with low-greenschist metamorphism (M2). The first main extensional event occurs in the Late Cretaceous, related to basin formation and sedimentation (D3). During Paleocene to Eocene, D4 intense imbrication of all tectonic units towards mainly SW takes place again. Nappes collapse and finally crustal exhumation taken place during Oligocene to Miocene, associated with low - angle normal faults, with a main top to the SW sense of movement (D5). In Miocene to recent times, high - angle normal and strike-slip faults are formed in an extensional to transtensional strain regime (D6), associated with Neogene to Quaternary basin formation and terrane dispersion. The basement rocks of both terranes are of Pelagonian origin, exhumed as a multiple tectonic window.


2003 ◽  
Vol 40 (2) ◽  
pp. 221-235 ◽  
Author(s):  
Yvon Lemieux ◽  
Alain Tremblay ◽  
Denis Lavoie

The Charlevoix area, which is host to an impact structure of Devonian age, straddles the boundaries among crystalline rocks of the Grenville Province, the Cambrian–Ordovician sedimentary succession of the St. Lawrence Platform, and accreted units of the Appalachian orogen. The area features well-developed supracrustal fault systems attributed to impact cratering. A major fault system oriented from northeast to northwest consists of normal faults marked by cataclastic and gouge breccias and, less frequently, by pseudotachylyte. Detailed mapping of faults both within and outside the Charlevoix impact crater suggests that brittle faulting occurred both before and after impact cratering. Polymictic fault breccias occurring along some supracrustal faults are the clearest evidence of impact-related fault rocks in the Charlevoix area. The St-Laurent fault, trending to the northeast, represents a major structure interpreted as being related to Late Proterozoic – early Paleozoic rifting of the Iapetus Ocean. However, the St-Laurent fault crosses the Charlevoix impact crater without major deflection, suggesting post-impact reactivation. The fault systems in the Charlevoix area are interpreted to be pre-impact structures related to the opening of the Iapetus Ocean, most of which have also been reactivated during the Devonian cratering event and in post-impact time, the latter most likely coeval with the Atlantic Ocean rifting in Mesozoic time.


2020 ◽  
Vol 57 (3) ◽  
pp. 149-176
Author(s):  
Nur Uddin Md Khaled Chowdhury ◽  
Dustin E. Sweet

The greater Taos trough located in north-central New Mexico represents one of numerous late Paleozoic basins that formed during the Ancestral Rocky Mountains deformation event. The late Paleozoic stratigraphy and basin geometry of the eastern portion of the greater Taos trough, also called the Rainsville trough, is little known because the strata are all in the subsurface. Numerous wells drilled through the late Paleozoic strata provide a scope for investigating subsurface stratigraphy and basin-fill architecture of the Rainsville trough. Lithologic data obtained predominantly from petrophysical well logs combined with available biostratigraphic data from the greater Taos trough allows construction of a chronostratigraphic framework of the basin fill. Isopach- and structure-maps indicate that the sediment depocenter was just east of the El Oro-Rincon uplift and a westerly thickening wedge-shaped basin-fill geometry existed during the Pennsylvanian. These relationships imply that the thrust system on the east side of the Precambrian-cored El Oro-Rincon uplift was active during the Pennsylvanian and segmented the greater Taos trough into the eastern Rainsville trough and the western Taos trough. During the Permian, sediment depocenter(s) shifted more southerly and easterly and strata onlap Precambrian basement rocks of the Sierra Grande uplift to the east and Cimarron arch to the north of the Rainsville trough. Permian strata appear to demonstrate minimal influence by faults that were active during the Pennsylvanian and sediment accumulation occurred both in the basinal area as well as on previous positive-relief highlands. A general Permian decrease in eustatic sea level and cessation of local-fault-controlled subsidence indicates that regional subsidence must have affected the region in the early Permian.


2001 ◽  
Vol 34 (3) ◽  
pp. 985 ◽  
Author(s):  
T. REISCHMANN ◽  
D. K. KOSTOPOULOS ◽  
S. LOOS ◽  
B. ANDERS ◽  
A. AVGERINAS ◽  
...  

We dated basement rocks from several localities southwest of Mt. Olympos, as well as from a locality near the top of the mountain using the single zircon Pb/Pb evaporation technique. For the samples southwest of the mountain, the ages obtained range from ca. 280 to 290 Ma, with only a few zircon grains being around 300 Ma. By contrast, the sample from near the top of the mountain appears to be slightly younger, with ca. 270 Ma. These ages imply that the granitoids crystallized during Late Carboniferous - Early Permian times, and are therefore younger than the basement gneisses of other regions of the Pelagonian zone, which yielded zircon ages of around 300 Ma (e.g. Yarwood & Aftalion 1976, Mountrakis 1983, De Bono 1998, Engel & Reischmann 2001). However, the ages obtained in the present study are identical, within error, to the muscovite Ar-Ar cooling ages from Mt. Ossa (Lips 1998). Our geochronological data show that the magmatic evolution for this part of the basement of the Pelagonian Zone lasted at least 30 Ma.


2021 ◽  
Author(s):  
Paolo Fulignati ◽  
Martina Zucchi ◽  
Andrea Brogi ◽  
Enrico Capezzuoli ◽  
Domenico Liotta ◽  
...  

&lt;p&gt;In the Iano area (Southern Tuscany) a small tectonic window of Tuscan metamorphic units is observed. This belongs to the northernmost part of the so-called Mid-Tuscan ridge and, during Pliocene, formed a submarine high, now defining the easternmost shoulder of the Volterra Pliocene basin. The area gives the opportunity to investigate the complete cycle of negative inversion from crustal thickening to crustal thinning, which characterizes Southern Tuscany. Our new data focus on the western margin of the Iano ridge, and in particular on a system of high angle normal faults that represents the youngest structures of the investigated area. These structures, deformed low angle regional detachments locally juxtaposing the uppermost units of contractional nappe stack (the ophiolite-bearing Ligurian units), with the Tuscan metamorphic units, with an almost complete excision of at least 3.5 Km thick Mesozoic to Tertiary Tuscan nappe succession. The high angle normal faults show variable Plio-Quaternary vertical displacements from few meters to about 500 meters, and acted as pathways for the upwelling of hydrothermal fluids, as revealed by Pleistocene travertine deposits, hydrothermal alteration and occurrence of different generations of fluid inclusions in hydrothermal veins associated with these fault systems. Fluid inclusions were studied in quartz veins hosted in the Verrucano metasediments forming the top of the Tuscan metamorphic unit, as well as in some carbonate lithotypes (Cretaceous to Tertiary in age) of the overlying Tuscan Nappe. Two different kinds of fluid inclusions were documented. The Type 1 are multiphase (liquid + vapor + 1 daughter mineral) liquid-rich fluid inclusions whereas the Type 2 are two-phase (liquid + vapor) liquid-rich fluid inclusions. Type 1 fluid inclusions are primary in origin and were found only in quartz veins present in Verrucano metarudites, whereas Type 2 fluid inclusions occur in quartz veins present in both Verrucano phyllites and quartzites and in the carbonate units of the Tuscan Nappe. These are secondary and can be furthermore distinguished in two sub-populations (Type 2a and Type 2b) on the basis of petrographic observation and microthermometric data. Fluid inclusion investigation evidenced an evolution of the hydrothermal fluids from relatively high-T (~265&amp;#176;C) and hypersaline (35 wt.% NaCl&lt;sub&gt;equiv.&lt;/sub&gt;) fluids trapped at about 100 MPa, to lower temperature (~195&amp;#176;C) and salinity (~9.5 wt.% NaCl&lt;sub&gt;equiv.&lt;/sub&gt;) fluids, having circulated in the high-angle fault system. Based on the new data and a revision of the local tectonic setting a fluid-rock interaction history has been reconstructed with new hints and constraints for the Plio-Quaternary extensional history of the Volterra basin.&lt;/p&gt;


1966 ◽  
Vol S7-VIII (4) ◽  
pp. 560-566 ◽  
Author(s):  
Lucien Barbaroux

Abstract New observations on the Brogger peninsula (Spitsbergen) show that the Hecla Hoek (Caledonide) geosynclinal metamorphic complex, reactivated by successive orogenies, overlaps Paleozoic and Cenozoic sedimentary formations in a northwest direction along a continuous front. The role of northwest-southeast-trending deformation in the Hercynian (late Paleozoic) and north-south deformation in the Tertiary assume greater importance than was heretofore accorded them. The existence of an Erzgebirgian (late Carboniferous) and a Saalian (mid-Permian) phase of Paleozoic orogeny can be shown.


2020 ◽  
Author(s):  
Daniel Muñoz-López ◽  
Gemma Alías ◽  
David Cruset ◽  
Irene Cantarero ◽  
Cédric M. Jonh ◽  
...  

Abstract. Calcite veins precipitated in the Estamariu thrust during two tectonic events decipher the temporal and spatial relationships between deformation and fluid migration in a long-lived thrust and determine the influence of basement rocks on the fluid chemistry during deformation. Structural and petrological observations constrain the timing of fluid migration and vein formation, whilst geochemical analyses (δ13C, δ18O, 87Sr/86Sr, clumped isotope thermometry and elemental composition) of the related calcite cements and host rocks indicate the fluid origin, pathways and extent of fluid-rock interaction. The first tectonic event, recorded by calcite cements Cc1a and Cc2, is related to the Alpine reactivation of the Estamariu thrust, and is characterized by the migration of meteoric fluids, heated at depth (temperatures between 56 and 98 °C) and interacted with crystalline basement rocks before upflowing through the thrust zone. During the Neogene extension, the Estamariu thrust was reactivated and normal faults and shear fractures with calcite cements Cc3, Cc4 and Cc5 developed. Cc3 and Cc4 precipitated from hydrothermal fluids (temperatures between 127 and 208 °C and between 102 and 167 °C, respectively) derived from crystalline basement rocks and expelled through fault zones during deformation. Cc5 precipitated from low temperature meteoric waters percolating from the surface through small shear fractures. The comparison between our results and already published data in other structures from the Pyrenees suggests that regardless of the origin of the fluids and the tectonic context, basement rocks have a significant influence on the fluid chemistry, particularly on the 87Sr/86Sr ratio. Accordingly, the cements precipitated from fluids interacted with crystalline basement rocks have significantly higher 87Sr/86Sr ratios (> 0.710) with respect to those precipitated from fluids that have interacted with the sedimentary cover (


Sign in / Sign up

Export Citation Format

Share Document