scholarly journals The sensitivity of GNSS measurements in Fennoscandia to distinct three-dimensional upper-mantle structures

2013 ◽  
Vol 5 (2) ◽  
pp. 2389-2418
Author(s):  
H. Steffen ◽  
P. Wu

Abstract. We present the sensitivity of Global Navigation Satellite System (GNSS) measurements at selected GNSS stations used both in the EUREF Permanent Network as well as in the BIFROST project to distinct areas in a laterally heterogeneous upper mantle beneath Fennoscandia. We therefore use a three-dimensional finite element model for glacial isostatic adjustment (GIA) calculations. The underlying structure is based on the S20A seismic tomography model, whose shear-wave velocities have been transformed into a viscosity structure of the upper mantle. Lower mantle is not investigated as previous results showed negligible sensitivity of Fennoscandian GIA data to it. We subdivide the upper mantle in four layers with lateral viscosity structure. Areas with similar viscosity within a layer are combined to larger blocks. Further subdivision is made into areas inside and outside the formerly glaciated areas. This leads to about 20 differently shaped areas per layer. We then calculate the sensitivity kernels at 10 selected GNSS stations for all blocks in comparison to a well-fitting one-dimensional GIA model. We find that GNSS stations are most sensitive to mantle viscosity in the near surrounding of the station, i.e. in the nearest about 250 km, and only within the formerly glaciated area. This area can be enlarged up to 800 km when velocities of stations in the uplift center are investigated. There is no indication of sufficiently high sensitivity of all investigated GNSS stations to regions outside the glaciated area. We also note that in the first mantle layer (70–250 km depth) below the lithosphere, there is only small sensitivity to parts along the Norwegian coast. Most prominent features in the Fennoscandian upper mantle may be detected in the second (250–450 km depth) and third layer (450–550 km depth). In future investigations on the lateral viscosity structure using GNSS measurements one should only consider GNSS stations within the area of former glaciation. They can be further grouped to address certain areas. In a combination with other GIA data, e.g. relative sea-level and gravity data, it is then highly recommended to assign more weight on those GNSS results with high sensitivity in order to determine the viscosity of a certain region.

Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 557-567 ◽  
Author(s):  
H. Steffen ◽  
P. Wu

Abstract. The sensitivity of global navigation satellite system (GNSS) measurements in Fennoscandia to nearby viscosity variations in the upper mantle is investigated using a 3-D finite element model of glacial isostatic adjustment (GIA). Based on the lateral viscosity structure inferred from seismic tomography and the location of the ice margin at the last glacial maximum (LGM), the GIA earth model is subdivided into four layers, where each of them contains an amalgamation of about 20 blocks of different shapes in the central area. The sensitivity kernels of the three velocity components at 10 selected GNSS stations are then computed for all the blocks. We find that GNSS stations within the formerly glaciated area are most sensitive to mantle viscosities below and in its near proximity, i.e., within about 250 km in general. However, this can be as large as 1000 km if the stations lie near the center of uplift. The sensitivity of all stations to regions outside the ice margin during the LGM is generally negligible. In addition, it is shown that prominent structures in the second (250–450 km depth) and third layers (450–550 km depth) of the upper mantle may be readily detected by GNSS measurements, while the viscosity in the first mantle layer below the lithosphere (70–250 km depth) along the Norwegian coast, which is related to lateral lithospheric thickness variation there, can also be detected but with limited sensitivity. For future investigations on the lateral viscosity structure, preference should be on GNSS stations within the LGM ice margin. But these stations can be grouped into clusters to improve the inference of viscosity in a specific area. However, the GNSS measurements used in such inversion should be weighted according to their sensitivity. Such weighting should also be applied when they are used in combination with other GIA data (e.g., relative sea-level and gravity data) for the inference of mantle viscosity.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2021 ◽  
Vol 13 (12) ◽  
pp. 6981
Author(s):  
Marcela Bindzarova Gergelova ◽  
Slavomir Labant ◽  
Jozef Mizak ◽  
Pavel Sustek ◽  
Lubomir Leicher

The concept of further sustainable development in the area of administration of the register of old mining works and recent mining works in Slovakia requires precise determination of the locations of the objects that constitute it. The objects in this register have their uniqueness linked with the history of mining in Slovakia. The state of positional accuracy in the registration of objects in its current form is unsatisfactory. Different database sources containing the locations of the old mining works are insufficient and show significant locational deviations. For this reason, it is necessary to precisely locate old mining works using modern measuring technologies. The most effective approach to solving this problem is the use of LiDAR data, which at the same time allow determining the position and above-ground shape of old mining works. Two localities with significant mining history were selected for this case study. Positional deviations in the location of old mining works among the selected data were determined from the register of old mining works in Slovakia, global navigation satellite system (GNSS) measurements, multidirectional hill-shading using LiDAR, and accessible data from the open street map. To compare the positions of identical old mining works from the selected database sources, we established differences in the coordinates (ΔX, ΔY) and calculated the positional deviations of the same objects. The average positional deviation in the total count of nineteen objects comparing documents, LiDAR data, and the register was 33.6 m. Comparing the locations of twelve old mining works between the LiDAR data and the open street map, the average positional deviation was 16.3 m. Between the data sources from GNSS and the registry of old mining works, the average positional deviation of four selected objects was 39.17 m.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 812
Author(s):  
Sotiris Lycourghiotis

The mean sea surface topography of the Ionian and Adriatic Seas has been determined. This was based on six-months of Global Navigation Satellite System (GNSS) measurements which were performed on the Ionian Queen (a ship). The measurements were analyzed following a double-path methodology based on differential GNSS (D-GNSS) and precise point positioning (PPP) analysis. Numerical filtering techniques, multi-parametric accuracy analysis and a new technique for removing the meteorological tide factors were also used. Results were compared with the EGM96 geoid model. The calculated differences ranged between 0 and 48 cm. The error of the results was estimated to fall within 3.31 cm. The 3D image of the marine topography in the region shows a nearly constant slope of 4 cm/km in the N–S direction. Thus, the effectiveness of the approach “repeated GNSS measurements on the same route of a ship” developed in the context of “GNSS methods on floating means” has been demonstrated. The application of this approach using systematic multi-track recordings on conventional liner ships is very promising, as it may open possibilities for widespread use of the methodology across the world.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


Author(s):  
Ping He ◽  
Yangmao Wen ◽  
Shuiping Li ◽  
Kaihua Ding ◽  
Zhicai Li ◽  
...  

Summary As the largest and most active intracontinental orogenic belt on Earth, the Tien Shan (TS) is a natural laboratory for understanding the Cenozoic orogenic processes driven by the India-Asia collision. On 19 January 2020, a Mw 6.1 event stuck the Kalpin region, where the southern frontal TS interacts with the Tarim basin. To probe the local ongoing orogenic processes and potential seismic hazard in the Kalpin region, both interseismic and instantaneous deformation derived from geodetic observations are employed in this study. With the constraint of interseismic global navigation satellite system (GNSS) velocities, we estimate the décollement plane parameters of the western Kalpin nappe based on a two-dimensional dislocation model, and the results suggest that the décollement plane is nearly subhorizontal with a dip of ∼3° at a depth of 24 km. Then, we collect both Sentinel-1 and ALOS-2 satellite images to capture the coseismic displacements caused by the 2020 Kalpin event, and the interferometric synthetic aperture radar (InSAR) images show a maximum displacement of 7 cm in the line of sight near the epicentral region. With these coseismic displacement measurements, we invert the source parameters of this event using a finite-fault model. We determine the optimal source mechanism in which the fault geometry is dominated by thrust faulting with an E–W strike of 275° and a northward dip of 11.2°, and the main rupture slip is concentrated within an area 28.0 km in length and${\rm{\,\,}}$10.3 km in width, with a maximum slip of 0.3 m at a depth of 6–8 km. The total released moment of our preferred distributed slip model yields a geodetic moment of 1.59 × 1018 N$\cdot $m, equivalent to Mw 6.1. The contrast of the décollement plane depth from interseismic GNSS and the rupture depth from coseismic InSAR suggests that a compression still exists in the Kalpin nappe forefront, which is prone to frequent moderate events and may be at risk of a much more dangerous earthquake.


2007 ◽  
Vol 129 (6) ◽  
pp. 1028-1034 ◽  
Author(s):  
Liang Wang ◽  
Sergio Felicelli

A three-dimensional finite element model was developed to predict the temperature distribution and phase transformation in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS™) rapid fabrication process. The development of the model was carried out using the SYSWELD software package. The model calculates the evolution of temperature in the part during the fabrication of a SS410 plate. The metallurgical transformations are taken into account using the temperature-dependent material properties and the continuous cooling transformation diagram. The ferritic and martensitic transformation as well as austenitization and tempering of martensite are considered. The influence of processing parameters such as laser power and traverse speed on the phase transformation and the consequent hardness are analyzed. The potential presence of porosity due to lack of fusion is also discussed. The results show that the temperature distribution, the microstructure, and hardness in the final part depend significantly on the processing parameters.


Sign in / Sign up

Export Citation Format

Share Document