A fuzzy intelligent system for land consolidation – a case study in Shunde, China
Abstract. Traditionally, potential evaluation methods for farmland consolidation have depended mainly on the experts' experiences, statistical computations or subjective adjustments. Some biases usually exist in the results. Thus, computer-aided technology has become essential. In this study, an intelligent evaluation system based on a fuzzy decision tree was established, and this system can deal with numerical data, discrete data and symbolic data. When the original land data are input, the level of potential of the agricultural land for development will be output by this new model. The provision of objective proof for decision making by authorities in rural management is helpful. Agricultural land data characteristically comprise large volumes, complex varieties and more indexes. In land consolidation, it is very important to construct an effective index system. We needed to select a group of indexes useful for land consolidation according to the concrete demand. In this paper, a fuzzy measure, which can describe the importance of a single feature or a group of features, is adopted to accomplish the selection of specific features. A fuzzy integral that is based on a fuzzy measure is a type of fusion tool. We obtained the optimal solution for a fuzzy measure by solving a fuzzy integral. The fuzzy integrals can be transformed to a set of linear equations. We applied the L1-norm regularization method to solve the linear equations, and we found a solution with the fewest nonzero elements for the fuzzy measure; this solution shows the contribution of corresponding features or the combinations of decisions. This algorithm provides a quick and optimal way to identify the land index system when preparing to conduct the research, such as we describe herein, on land consolidation. Shunde's "Three Old" consolidation project provides the data for this work. Our estimation system was compared with a conventional evaluation system that is still accepted by the public. Our results prove to be consistent, and the new model is more automatic and intelligent. The results of this estimation system are significant for informing decision making in land consolidation.