scholarly journals Integrating a mini catchment with mulching for soil water management in a sloping jujube orchard on the semiarid Loess Plateau of China

2015 ◽  
Vol 7 (4) ◽  
pp. 3199-3222
Author(s):  
H. C. Li ◽  
X. D. Gao ◽  
X. N. Zhao ◽  
P. T. Wu ◽  
L. S. Li ◽  
...  

Abstract. Conserving more soil water is of great importance to the success of arid and semiarid orchards. On the hilly areas of the Loess Plateau of China, mini catchments, named fish-scale pits, are widely used in orchards for collecting surface runoff to infiltrate more soil water. However, the flat surface inside fish-scale pits would increase soil evaporation during non-rainfall periods. Therefore, we integrated fish-scale pits with mulching, a popular meaning to reduce soil evaporation, to test whether this integration could improve soil water conservation. The results showed that soil water deficit was observed for all treatments. However, soil water deficit was further intensified in the dry month. An index was used to represent the soil water supply from rainfall infiltration denoted WS. For the fish-scale pit with branch mulching treatment in the entire soil profile, the compensation degree of SWS were greater than 0. However, the CK treatment showed negative values in the 40–180 cm. In conclusion, integrating fish-scale pits with mulching could conserve significantly more soil water by increasing infiltration and decreasing evaporation compared to fish-scale pits alone. Since the mulching branches were trimmed jujube branches, the integration of fish-scale pit with branch mulching is recommended in jujube orchards in order to both preserve more soil water and reduce the cost of mulching materials.

2021 ◽  
Vol 260 ◽  
pp. 107990
Author(s):  
Gulnazar Ali ◽  
Zikui Wang ◽  
Xinrong Li ◽  
Naixuan Jin ◽  
Huiying Chu ◽  
...  

2016 ◽  
Vol 138 (1-2) ◽  
pp. 157-171 ◽  
Author(s):  
Dianyuan Ding ◽  
Hao Feng ◽  
Ying Zhao ◽  
Wenzhao Liu ◽  
Haixin Chen ◽  
...  

Solid Earth ◽  
2016 ◽  
Vol 7 (1) ◽  
pp. 167-175 ◽  
Author(s):  
H. C. Li ◽  
X. D. Gao ◽  
X. N. Zhao ◽  
P. T. Wu ◽  
L. S. Li ◽  
...  

Abstract. Conserving more soil water is of great importance to the sustainability of arid and semiarid orchards. Here we integrated fish-scale pits, semicircular mini-catchments for hill slope runoff collection, with mulches to test their effects on soil water storage in a 12-year-old dryland jujube orchard on the Loess Plateau of China, by using soil water measurements from April 2013 to November 2014. This experiment included four treatments: fish-scale pits with branch mulching (FB), fish-scale pits with straw mulching (FS), fish-scale pits without mulching (F), and bare land treatment (CK). Soil water was measured using the TRIME®-IPH time-domain reflectometer (TDR) tool in 20 cm intervals down to a depth of 180 cm, and was measured once every 2 weeks in the 2013 and 2014 growing seasons. The results showed that fish-scale pits with mulching were better in soil water conservation. Average soil water storage (SWS, for short) of FB at soil layer depths of 0–180 cm increased by 14.23 % (2013) and 21.81 % (2014), respectively, compared to CK, but only increased by 4.82 % (2013) and 5.34 % (2014), respectively, for the F treatment. The degree of soil water compensation, WS, was employed here to represent to what extent soil water was recharged from precipitation at the end of the rainy season relative to that at the beginning of the rainy season. A positive (negative) WS larger (lower) soil water content at the end of rainy season than at the beginning. For the treatment of FB, the values of WS over the entire soil profile were greater than 0; for the treatment of F, negative values of WS were observed in depths of 60–100 cm in both years. However, the bare land treatment showed negative values in depths of 40–180 cm. This indicated that integrating fish-scale pits with mulching could significantly increase soil water storage by increasing infiltration and decreasing evaporation, and it showed greater soil water storage and degree of soil water compensation compared to fish-scale pits alone. Since the branches used for mulching here were trimmed jujube branches, the cost of mulching materials was largely reduced. Therefore, integration of fish-scale pits with branch mulching is recommended in orchards for soil water conservation on the Loess Plateau and potentially for other regions.


2016 ◽  
Vol 48 (5) ◽  
pp. 1378-1390 ◽  
Author(s):  
Fei Tian ◽  
Xiaoming Feng ◽  
Lu Zhang ◽  
Bojie Fu ◽  
Shuai Wang ◽  
...  

Revegetation can alter catchment water balance and result in soil desiccation. Large-scale revegetation took place in the Loess Plateau of China to control soil erosion and improve environmental conditions. However, the dynamic nature of soil moisture in response to revegetation under different climatic conditions is still unclear mainly due to lack of long-term in situ observations. To overcome this challenge, a biophysically based ecohydrological model (WAVES) was used to examine the effects of revegetation on soil moisture. Results showed that trees consume more water (100% of precipitation) than shrub (97.6%) and grass (98.3%), and therefore are more likely to result in soil desiccation. No runoff occurred under the tree scenario, while for shrub and grass, runoff accounted for 2.4% and 1.7% of precipitation, respectively. In areas with mean annual precipitation (MAP) less than 400 mm, tree planting resulted in soil water deficit, while in areas with MAP exceeding 600 mm, no soil water deficit occurred. Within this MAP range (400 < MAP < 600 mm), this could lead to soil water deficit during dry years. Extending this analysis to the entire Loess Plateau, 40% of the region will face reduced soil moisture when converting cropland to trees.


2013 ◽  
Vol 89 (02) ◽  
pp. 153-161 ◽  
Author(s):  
Yang Zhao ◽  
Xinxiao Yu

The Loess Plateau in north-central China has a long history of human activities. As a result of climate change, deforestation and sparse vegetative cover, the region suffers from water shortages and severe soil erosion, significantly influencing efforts for sustainable social development. In order to understand the impacts of climatic variability and human activities on runoff and other hydrological factors in this region, the Luoyugou catchment and its paired catchments (Qiaozidong and Qiaozixi) were selected. Statistical analysis indicated precipitation did not vary significantly whereas the annual runoff decreased from 1986 to 2008, with an abrupt change in 1994. Actual evapotranspiration (AET) increased slightly but not significantly. A comparison of runoff in the paired catchments showed land use changes reduced runoff by more than 38% under the same rainfall conditions. Human activities were the strongest contributor to changes in runoff and AET, at 67% and 90% respectively, while the remaining contributor was climate variation. The influence of various human activities on runoff is quite different, and soil-water conservation initiatives have a greater impact on runoff (about 41%). Thus, human activities were the primary reason for the reduction in runoff in the study catchment compared to climate. Greater emphasis should be given to afforestation and soil-water conservation measures.


2020 ◽  
Author(s):  
Xiao Zhang ◽  
Wenwu Zhao ◽  
Paulo Pereira

<p>The soil available water content (AWC) has a strong ability to indicate the soil water conditions under different land cover types. Although the AWC has long been calculated, soil water characteristic curve estimation models and the distribution of AWC, as well as the impact factors, have rarely been evaluated in the Loess Plateau of China. In this study, four typical land cover types were selected: introduced shrubland, introduced grassland, natural restored shrubland and natural restored grassland. Four widely used models were compared with the van Genuchten (VG) model, including the Arya and Paris (AP) model, Mohammadi and Vanclooster (MV) model, Tyler and Wheatcraft (TW) model, and linear fitting (LF) model to estimate the wilting point. The distribution of AWC and the relationships with environmental factors were measured and analyzed. The results showed the following: (1) the MV model was the most suitable model to estimate the soil water characteristic curve in the Loess Plateau; (2) the factors impacting the AWC varied under different precipitation gradients, and the area with a mean annual precipitation of 440-510 mm was the most sensitive zone to environmental and vegetation factors; and (3) the soil water deficit was more severe when considering AWC than when considering soil water content (SWC), and the water deficits were different under introduced grassland and introduced shrubland. Consequently, the construction of vegetation restoration should be more cautious and consider the trade-off between soil conservation and water conservation. During restoration, policy makers should focus on the AWC in addition to the SWC to better assess the soil moisture status.</p>


2021 ◽  
Author(s):  
Xiao Zhang ◽  
Wenwu Zhao ◽  
Lixin Wang ◽  
Paulo Pereira

<p>The soil available water content (AWC) has a strong ability to indicate the soil water conditions under different land cover types. Although the AWC has long been calculated, soil water characteristic curve estimation models and the distribution of AWC, as well as the impact factors, have rarely been evaluated in the Loess Plateau of China. In this study, four typical land cover types were selected: introduced shrubland, introduced grassland, natural restored shrubland and natural restored grassland. Four widely used models were compared with the van Genuchten (VG) model, including the Arya and Paris (AP) model, Mohammadi and Vanclooster (MV) model, Tyler and Wheatcraft (TW) model, and linear fitting (LF) model to estimate the wilting point. The distribution of AWC and the relationships with environmental factors were measured and analyzed. The results showed the following: (1) the MV model was the most suitable model to estimate the soil water characteristic curve in the Loess Plateau; (2) the factors impacting the AWC varied under different precipitation gradients, and the area with a mean annual precipitation of 440-510 mm was the most sensitive zone to environmental and vegetation factors; and (3) the soil water deficit was more severe when considering AWC than when considering soil water content (SWC), and the water deficits were different under introduced grassland and introduced shrubland. Consequently, the construction of vegetation restoration should be more cautious and consider the trade-off between soil conservation and water conservation. During restoration, policy makers should focus on the AWC in addition to the SWC to better assess the soil moisture status.        </p>


Sign in / Sign up

Export Citation Format

Share Document