scholarly journals Greenland annual accumulation along the EGIG line, 1959–2004, from ASIRAS airborne radar and neutron-probe density measurements

2016 ◽  
Vol 10 (4) ◽  
pp. 1679-1694 ◽  
Author(s):  
Thomas B. Overly ◽  
Robert L. Hawley ◽  
Veit Helm ◽  
Elizabeth M. Morris ◽  
Rohan N. Chaudhary

Abstract. We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16–20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

2015 ◽  
Vol 9 (6) ◽  
pp. 6791-6828
Author(s):  
T. B. Overly ◽  
R. L. Hawley ◽  
V. Helm ◽  
E. M. Morris ◽  
R. N. Chaudhary

Abstract. We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and detailed neutron-probe (NP) density profiles. ASIRAS-NP accumulation rates are not statistically different (C.I. 95 %) from in situ EGIG accumulation measurements from 1985 to 2004. Below 3000 m elevation, ASIRAS-NP increases by 20 % for the period 1995 to 2004 compared to 1985 to 1994. Above 3000 m elevation, accumulation increases by 13 % for 1995–2004 compared to 1985–1994. Model snow accumulation results from the calibrated Fifth Generation Mesoscale Model modified for polar climates (Polar MM5) underestimate mean annual accumulation by 16 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modelled density profiles in place of detailed NP data. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the IceBridge campaign.


2020 ◽  
Vol 61 (81) ◽  
pp. 214-224 ◽  
Author(s):  
Nanna B. Karlsson ◽  
Sebastian Razik ◽  
Maria Hörhold ◽  
Anna Winter ◽  
Daniel Steinhage ◽  
...  

AbstractThe internal stratigraphy of snow and ice as imaged by ground-penetrating radar may serve as a source of information on past accumulation. This study presents results from two ground-based radar surveys conducted in Greenland in 2007 and 2015, respectively. The first survey was conducted during the traverse from the ice-core station NGRIP (North Greenland Ice Core Project) to the ice-core station NEEM (North Greenland Eemian Ice Drilling). The second survey was carried out during the traverse from NEEM to the ice-core station EGRIP (East Greenland Ice Core Project) and then onwards to Summit Station. The total length of the radar profiles is 1427 km. From the radar data, we retrieve the large-scale spatial variation of the accumulation rates in the interior of the ice sheet. The accumulation rates range from 0.11 to 0.26 m a−1 ice equivalent with the lowest values found in the northeastern sector towards EGRIP. We find no evidence of temporal or spatial changes in accumulation rates when comparing the 150-year average accumulation rates with the 321-year average accumulation rates. Comparisons with regional climate models reveal that the models underestimate accumulation rates by up to 35% in northeastern Greenland. Our results serve as a robust baseline to detect present changes in either surface accumulation rates or patterns.


2020 ◽  
Vol 61 (81) ◽  
pp. 225-233 ◽  
Author(s):  
Lynn Montgomery ◽  
Lora Koenig ◽  
Jan T. M. Lenaerts ◽  
Peter Kuipers Munneke

AbstractSince the year 2000, Greenland ice sheet mass loss has been dominated by a decrease in surface mass balance rather than an increase in solid ice discharge. Southeast Greenland is an important region to understand how high accumulation rates can offset increasing Greenland ice sheet meltwater runoff. To that end, we derive a new 9-year long dataset (2009–17) of accumulation rates in Southeast Greenland using NASA Operation IceBridge snow radar. Our accumulation dataset derived from internal layers focuses on high elevations (1500–3000 m) because at lower elevations meltwater percolation obscured internal layer structure. The uncertainty of the radar-derived accumulation rates is 11% [using Firn Densification Model (FDM) density profiles] and the average accumulation rate ranges from 0.5 to 1.2 m w.e. With our observations spanning almost a decade, we find large inter-annual variability, but no significant trend. Accumulation rates are compared with output from two regional climate models (RCMs), MAR and RACMO2. This comparison shows that the models are underestimating accumulation in Southeast Greenland and the models misrepresent spatial heterogeneity due to an orographically forced bias in snowfall near the coast. Our dataset is useful to fill in temporal and spatial data gaps, and to evaluate RCMs where few in situ measurements are available.


2020 ◽  
Author(s):  
Philipp S. Sommer ◽  
Ronny Petrik ◽  
Beate Geyer ◽  
Ulrike Kleeberg ◽  
Dietmar Sauer ◽  
...  

<p>The complexity of Earth System and Regional Climate Models represents a considerable challenge for developers. Tuning but also improving one aspect of a model can unexpectedly decrease the performance of others and introduces hidden errors. Reasons are in particular the multitude of output parameters and the shortage of reliable and complete observational datasets. One possibility to overcome these issues is a rigorous and continuous scientific evaluation of the model. This requires standardized model output and, most notably, standardized observational datasets. Additionally, in order to reduce the extra burden for the single scientist, this evaluation has to be as close as possible to the standard workflow of the researcher, and it needs to be flexible enough to adapt it to new scientific questions.</p><p>We present the Free Evaluation System Framework (Freva) implementation within the Helmholtz Coastal Data Center (HCDC) at the Institute of Coastal Research in the Helmholtz-Zentrum Geesthacht (HZG). Various plugins into the Freva software, namely the HZG-EvaSuite, use observational data to perform a standardized evaluation of the model simulation. We present a comprehensive data management infrastructure that copes with the heterogeneity of observations and simulations. This web framework comprises a FAIR and standardized database of both, large-scale and in-situ observations exported to a format suitable for data-model intercomparisons (particularly netCDF following the CF-conventions). Our pipeline links the raw data of the individual model simulations (i.e. the production of the results) to the finally published results (i.e. the released data). </p><p>Another benefit of the Freva-based evaluation is the enhanced exchange between the different compartments of the institute, particularly between the model developers and the data collectors, as Freva contains built-in functionalities to share and discuss results with colleagues. We will furthermore use the tool to strengthen the active communication with the data and software managers of the institute to generate or adapt the evaluation plugins.</p>


2019 ◽  
Vol 20 (5) ◽  
pp. 863-882 ◽  
Author(s):  
Kabir Rasouli ◽  
John W. Pomeroy ◽  
Paul H. Whitfield

Abstract How mountain hydrology at different elevations will respond to climate change is a challenging question of great importance to assessing changing water resources. Here, three North American Cordilleran snow-dominated basins—Wolf Creek, Yukon; Marmot Creek, Alberta; and Reynolds Mountain East, Idaho—each with good meteorological and hydrological records, were modeled using the physically based, spatially distributed Cold Regions Hydrological Model. Model performance was verified using field observations and found adequate for diagnostic analysis. To diagnose the effects of future climate, the monthly temperature and precipitation changes projected for the future by 11 regional climate models for the mid-twenty-first century were added to the observed meteorological time series. The modeled future was warmer and wetter, increasing the rainfall fraction of precipitation and shifting all three basins toward rainfall–runoff hydrology. This shift was largest at lower elevations and in the relatively warmer Reynolds Mountain East. In the warmer future, there was decreased blowing snow transport, snow interception and sublimation, peak snow accumulation, and melt rates, and increased evapotranspiration and the duration of the snow-free season. Annual runoff in these basins did not change despite precipitation increases, warming, and an increased prominence of rainfall over snowfall. Reduced snow sublimation offset reduced snowfall amounts, and increased evapotranspiration offset increased rainfall amounts. The hydrological uncertainty due to variation among climate models was greater than the predicted hydrological changes. While the results of this study can be used to assess the vulnerability and resiliency of water resources that are dependent on mountain snow, stakeholders and water managers must make decisions under considerable uncertainty, which this paper illustrates.


2019 ◽  
Vol 13 (3) ◽  
pp. 845-859 ◽  
Author(s):  
Baptiste Vandecrux ◽  
Michael MacFerrin ◽  
Horst Machguth ◽  
William T. Colgan ◽  
Dirk van As ◽  
...  

Abstract. A porous layer of multi-year snow known as firn covers the Greenland-ice-sheet interior. The firn layer buffers the ice-sheet contribution to sea-level rise by retaining a fraction of summer melt as liquid water and refrozen ice. In this study we quantify the Greenland ice-sheet firn air content (FAC), an indicator of meltwater retention capacity, based on 360 point observations. We quantify FAC in both the uppermost 10 m and the entire firn column before interpolating FAC over the entire ice-sheet firn area as an empirical function of long-term mean air temperature (Ta‾) and net snow accumulation (c˙‾). We estimate a total ice-sheet-wide FAC of 26 800±1840 km3, of which 6500±450 km3 resides within the uppermost 10 m of firn, for the 2010–2017 period. In the dry snow area (Ta‾≤-19 ∘C), FAC has not changed significantly since 1953. In the low-accumulation percolation area (Ta‾>-19 ∘C and c˙‾≤600 mm w.e. yr−1), FAC has decreased by 23±16 % between 1998–2008 and 2010–2017. This reflects a loss of firn retention capacity of between 150±100 Gt and 540±440 Gt, respectively, from the top 10 m and entire firn column. The top 10 m FACs simulated by three regional climate models (HIRHAM5, RACMO2.3p2, and MARv3.9) agree within 12 % with observations. However, model biases in the total FAC and marked regional differences highlight the need for caution when using models to quantify the current and future FAC and firn retention capacity.


2005 ◽  
Vol 9 (11) ◽  
pp. 1-21 ◽  
Author(s):  
Mark A. Snyder ◽  
Lisa C. Sloan

Abstract Regional climate models (RCMs) have improved our understanding of the effects of global climate change on specific regions. The need for realistic forcing has led to the use of fully coupled global climate models (GCMs) to produce boundary conditions for RCMs. The advantages of using fully coupled GCM output is that the global-scale interactions of all components of the climate system (ocean, sea ice, land surface, and atmosphere) are considered. This study uses an RCM, driven by a fully coupled GCM, to examine the climate of a region centered over California for the time periods 1980–99 and 2080–99. Statistically significant increases in mean monthly temperatures by up to 7°C are found for the entire state. Large changes in precipitation occur in northern California in February (increase of up to 4 mm day−1 or 30%) and March (decrease of up to 3 mm day−1 or 25%). However, in most months, precipitation changes between the cases were not statistically significant. Statistically significant decreases in snow accumulation of over 100 mm (50%) occur in some months. Temperature increases lead to decreases in snow accumulation that impact the hydrologic budget by shifting spring and summer runoff into the winter months, reinforcing results of other studies that used different models and driving conditions.


2003 ◽  
Vol 34 (5) ◽  
pp. 399-412 ◽  
Author(s):  
M. Rummukainen ◽  
J. Räisänen ◽  
D. Bjørge ◽  
J.H. Christensen ◽  
O.B. Christensen ◽  
...  

According to global climate projections, a substantial global climate change will occur during the next decades, under the assumption of continuous anthropogenic climate forcing. Global models, although fundamental in simulating the response of the climate system to anthropogenic forcing are typically geographically too coarse to well represent many regional or local features. In the Nordic region, climate studies are conducted in each of the Nordic countries to prepare regional climate projections with more detail than in global ones. Results so far indicate larger temperature changes in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models do not yet fully incorporate hydrology. Water resources studies are carried out off-line using hydrological models. This requires archived meteorological output from climate models. This paper discusses Nordic regional climate scenarios for use in regional water resources studies. Potential end-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding.


Sign in / Sign up

Export Citation Format

Share Document