scholarly journals Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow

2018 ◽  
Vol 12 (5) ◽  
pp. 1699-1713 ◽  
Author(s):  
Sebastian H. R. Rosier ◽  
G. Hilmar Gudmundsson

Abstract. GPS measurements reveal strong modulation of horizontal ice shelf and ice stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We show how well-known non-linear aspects of ice rheology can give rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.

2017 ◽  
Author(s):  
Sebastian H. R. Rosier ◽  
G. Hilmar Gudmundsson

Abstract. GPS measurements reveal strong modulation of horizontal ice-shelf and ice-stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We propose that tidal bending stresses, through the nonlinear rheology of glacier ice, can have a sufficiently large impact on the effective viscosity of ice along its floating margins to give rise to significant and widespread temporal variations in the horizontal velocity of ice shelves. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice-shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.


2020 ◽  
Vol 14 (1) ◽  
pp. 17-37 ◽  
Author(s):  
Sebastian H. R. Rosier ◽  
G. Hilmar Gudmundsson

Abstract. An extensive network of GPS sites on the Filchner–Ronne Ice Shelf and adjoining ice streams shows strong tidal modulation of horizontal ice flow at a range of frequencies. A particularly strong (horizontal) response is found at the fortnightly (Msf) frequency. Since this tidal constituent is absent in the (vertical) tidal forcing, this observation implies the action of some non-linear mechanism. Another striking aspect is the strong amplitude of the flow perturbation, causing a periodic reversal in the direction of ice shelf flow in some areas and a 10 %–20 % change in speed at grounding lines. No model has yet been able to reproduce the quantitative aspects of the observed tidal modulation across the entire Filchner–Ronne Ice Shelf. The cause of the tidal ice flow response has, therefore, remained an enigma, indicating a serious limitation in our current understanding of the mechanics of large-scale ice flow. A further limitation of previous studies is that they have all focused on isolated regions and interactions between different areas have, therefore, not been fully accounted for. Here, we conduct the first large-scale ice flow modelling study to explore these processes using a viscoelastic rheology and realistic geometry of the entire Filchner–Ronne Ice Shelf, where the best observations of tidal response are available. We evaluate all relevant mechanisms that have hitherto been put forward to explain how tides might affect ice shelf flow and compare our results with observational data. We conclude that, while some are able to generate the correct general qualitative aspects of the tidally induced perturbations in ice flow, most of these mechanisms must be ruled out as being the primary cause of the observed long-period response. We find that only tidally induced lateral migration of grounding lines can generate a sufficiently strong long-period Msf response on the ice shelf to match observations. Furthermore, we show that the observed horizontal short-period semidiurnal tidal motion, causing twice-daily flow reversals at the ice front, can be generated through a purely elastic response to basin-wide tidal perturbations in the ice shelf slope. This model also allows us to quantify the effect of tides on mean ice flow and we find that the Filchner–Ronne Ice Shelf flows, on average, ∼ 21 % faster than it would in the absence of large ocean tides.


2019 ◽  
Vol 13 (10) ◽  
pp. 2771-2787 ◽  
Author(s):  
Jan De Rydt ◽  
Gudmundur Hilmar Gudmundsson ◽  
Thomas Nagler ◽  
Jan Wuite

Abstract. Despite the potentially detrimental impact of large-scale calving events on the geometry and ice flow of the Antarctic Ice Sheet, little is known about the processes that drive rift formation prior to calving, or what controls the timing of these events. The Brunt Ice Shelf in East Antarctica presents a rare natural laboratory to study these processes, following the recent formation of two rifts, each now exceeding 50 km in length. Here we use 2 decades of in situ and remote sensing observations, together with numerical modelling, to reveal how slow changes in ice shelf geometry over time caused build-up of mechanical tension far upstream of the ice front, and culminated in rift formation and a significant speed-up of the ice shelf. These internal feedbacks, whereby ice shelves generate the very conditions that lead to their own (partial) disintegration, are currently missing from ice flow models, which severely limits their ability to accurately predict future sea level rise.


2017 ◽  
Vol 11 (6) ◽  
pp. 2543-2554 ◽  
Author(s):  
Sainan Sun ◽  
Stephen L. Cornford ◽  
John C. Moore ◽  
Rupert Gladstone ◽  
Liyun Zhao

Abstract. Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.


2019 ◽  
Author(s):  
Jan De Rydt ◽  
G. Hilmar Gudmundsson ◽  
Thomas Nagler ◽  
Jan Wuite

Abstract. Despite the potentially detrimental impact of large-scale calving events on the geometry and ice flow of the Antarctic Ice Sheet, little is known about the processes that drive rift formation prior to calving, or what controls the timing of these events. The Brunt Ice Shelf in East Antarctica presents a rare natural laboratory to study these processes, following the recent formation of two rifts, each now exceeding 50 km in length. Here we use a unique 50-years' time series of in-situ and remote sensing observations, together with numerical modelling, to reveal how slow changes in ice shelf geometry over time caused build-up of mechanical tension far upstream of the ice front, and culminated in rift formation and a significant speed-up of the ice shelf. These internal feedbacks, whereby ice shelves generate the very conditions that lead to their own (partial) disintegration are currently missing from ice flow models, which severely limits their ability to accurately predict future sea level rise.


2019 ◽  
Author(s):  
Sebastian H. R. Rosier ◽  
G. Hilmar Gudmundsson

Abstract. An extensive network of GPS sites on the Filchner-Ronne Ice Shelf and adjoining ice streams show strong tidal modulation of horizontal ice flow at a range of frequencies. A particularly strong (horizontal) response is found at the fortnightly (Msf) frequency. Since this tidal constituent is absent in the (vertical) tidal forcing, this observation implies the action of some nonlinear mechanism. Another striking aspect is the strong amplitude of the flow perturbation, causing a periodic reversal in the direction of ice shelf flow in some areas, and a 10–20 % change in speed at grounding lines. No model has yet been able to reproduce the quantitative aspects of the observed tidal modulation on the Filchner-Ronne Ice Shelf. The cause of the tidal response has therefore remained an enigma, indicating a serious limitation in our current understanding of the mechanics of large-scale ice flow. A further limitation of previous studies is that they have all focused on isolated regions and interactions between different areas have, therefore, not been fully accounted for. Here, we conduct the first large-scale ice-flow modelling study to explore these processes using a viscoelastic rheology and realistic geometry of the entire Filchner-Ronne ice shelf, where the best observations of tidal response are available. We evaluate all the relevant mechanisms that have hitherto been put forward to explain how tides might affect ice-shelf flow and compare our results with observational data. We conclude that, while some are able to generate the correct general qualitative aspects of the tidally-induced perturbations in ice flow, most of these mechanisms must be ruled out as being the primary cause of the large observed nonlinear response. We find that only tidally-induced lateral migration of grounding lines can generate a sufficiently strong long-periodic Msf response on the ice shelf to match observations. Furthermore, we show that the observed short-periodic diurnal tidal motion, causing twice-daily flow reversals at the ice front, can be generated through a purely elastic response to basin-wide tidal perturbations in the ice shelf slope. This model also allows us to quantify the effect of tides on mean ice flow and we find that the Filchner-Ronne Ice Shelf flows on average ~ 21 % faster than it would in the absence of large ocean tides.


2015 ◽  
Vol 9 (2) ◽  
pp. 1461-1502
Author(s):  
J. J. Fürst ◽  
G. Durand ◽  
F. Gillet-Chaulet ◽  
N. Merino ◽  
L. Tavard ◽  
...  

Abstract. In ice flow modelling, the use of control methods to assimilate the dynamic and geometric state of an ice body has become common practice. These methods have primarily focussed on inverting for one of the two least known properties in glaciology, namely the basal friction coefficient or the ice viscosity parameter. Here, we present an approach to infer both properties simultaneously for the whole of the Antarctic ice sheet. During the assimilation, the root-mean-square deviation between modelled and observed surface velocities is reduced to 12.3 m a−1, with a value of 16.4 m a−1 for the ice shelves. An exception in terms of the velocity mismatch is the Thwaites Glacier ice shelf, where the RMS value attains almost 80 m a−1. The reason is that the underlying BEDMAP2 geometry ignores the presence of an ice rise, that exerts major control on the dynamics of the eastern part of the ice shelf. On these grounds, we suggest an approach to account for pinning points not included in BEDMAP2 by locally allowing an optimisation of basal friction during the inversion. In this way, the velocity mismatch on the Thwaites ice shelf is more than halved. A characteristic velocity mismatch pattern emerges for unaccounted pinning points close to the marine shelf front. This pattern is exploited to manually identify 7 uncharted features around Antarctica that exert significant resistance to the shelf flow. Potential pinning points are detected on Fimbul, West, Shakelton, Nickerson and Venable ice shelves. As pinning points can provide substantial resistance to shelf flow, with considerable consequences if they became ungrounded in the future, the model community is in need of detailed bathymetry there. Our data assimilation points to some of these dynamically important features, not present in BEDMAP2, and implicitly quantifies their relevance.


1993 ◽  
Vol 39 (133) ◽  
pp. 483-590 ◽  
Author(s):  
I. M. Whillans ◽  
C.J. Van Der Veen

AbstractMeasurements of velocity have been made on and next to Ice Streams Β and C, West Antarctica. The results are more precise than previous work and constitute a 93% increase in the number of values. These velocities are used to describe the confluence of flow into the ice streams and the development of fast ice-stream flow. The onset of fast-streaming flow occurs in many separate tributaries that coalesce down-glacier into the major ice streams. For those inter-stream ridges that have been studied, the flow is consistent with steady state. Along Ice Stream B, gradients in longitudinal stress offer little resistance to the ice flow. The transition from basal-drag control to ice-shelf flow is achieved through reduced drag at the glacier base and increased resistance associated with lateral drag. Velocities in the trunk of Ice Stream C are nearly zero but those at the up-glacial head are similar to those at the head of Ice Stream B.


1993 ◽  
Vol 39 (133) ◽  
pp. 483-590 ◽  
Author(s):  
I. M. Whillans ◽  
C.J. Van Der Veen

Abstract Measurements of velocity have been made on and next to Ice Streams Β and C, West Antarctica. The results are more precise than previous work and constitute a 93% increase in the number of values. These velocities are used to describe the confluence of flow into the ice streams and the development of fast ice-stream flow. The onset of fast-streaming flow occurs in many separate tributaries that coalesce down-glacier into the major ice streams. For those inter-stream ridges that have been studied, the flow is consistent with steady state. Along Ice Stream B, gradients in longitudinal stress offer little resistance to the ice flow. The transition from basal-drag control to ice-shelf flow is achieved through reduced drag at the glacier base and increased resistance associated with lateral drag. Velocities in the trunk of Ice Stream C are nearly zero but those at the up-glacial head are similar to those at the head of Ice Stream B.


2015 ◽  
Vol 9 (4) ◽  
pp. 1427-1443 ◽  
Author(s):  
J. J. Fürst ◽  
G. Durand ◽  
F. Gillet-Chaulet ◽  
N. Merino ◽  
L. Tavard ◽  
...  

Abstract. In ice flow modelling, the use of control methods to assimilate the dynamic and geometric state of an ice body has become common practice. These methods have primarily focussed on inverting for one of the two least known properties in glaciology, namely the basal friction coefficient or the ice viscosity parameter. Here, we present an approach to infer both properties simultaneously for the whole of the Antarctic ice sheet. After the assimilation, the root-mean-square deviation between modelled and observed surface velocities attains 8.7 m a−1 for the entire domain, with a slightly higher value of 14.0 m a−1 for the ice shelves. An exception in terms of the velocity mismatch is the Thwaites Glacier Ice Shelf, where the RMS value is almost 70 m a−1. The reason is that the underlying Bedmap2 geometry ignores the presence of an ice rise, which exerts major control on the dynamics of the eastern part of the ice shelf. On these grounds, we suggest an approach to account for pinning points not included in Bedmap2 by locally allowing an optimisation of basal friction during the inversion. In this way, the velocity mismatch on the ice shelf of Thwaites Glacier is more than halved. A characteristic velocity mismatch pattern emerges for unaccounted pinning points close to the marine shelf front. This pattern is exploited to manually identify seven uncharted features around Antarctica that exert significant resistance to the shelf flow. Potential pinning points are detected on Fimbul, West, Shackleton, Nickerson and Venable ice shelves. As pinning points can provide substantial resistance to shelf flow, with considerable consequences if they became ungrounded in the future, the model community is in need of detailed bathymetry there. Our data assimilation points to some of these dynamically important features not present in Bedmap2 and implicitly quantifies their relevance.


Sign in / Sign up

Export Citation Format

Share Document