scholarly journals Calving cycle of the Brunt Ice Shelf, Antarctica, driven by changes in ice shelf geometry

2019 ◽  
Vol 13 (10) ◽  
pp. 2771-2787 ◽  
Author(s):  
Jan De Rydt ◽  
Gudmundur Hilmar Gudmundsson ◽  
Thomas Nagler ◽  
Jan Wuite

Abstract. Despite the potentially detrimental impact of large-scale calving events on the geometry and ice flow of the Antarctic Ice Sheet, little is known about the processes that drive rift formation prior to calving, or what controls the timing of these events. The Brunt Ice Shelf in East Antarctica presents a rare natural laboratory to study these processes, following the recent formation of two rifts, each now exceeding 50 km in length. Here we use 2 decades of in situ and remote sensing observations, together with numerical modelling, to reveal how slow changes in ice shelf geometry over time caused build-up of mechanical tension far upstream of the ice front, and culminated in rift formation and a significant speed-up of the ice shelf. These internal feedbacks, whereby ice shelves generate the very conditions that lead to their own (partial) disintegration, are currently missing from ice flow models, which severely limits their ability to accurately predict future sea level rise.

2019 ◽  
Author(s):  
Jan De Rydt ◽  
G. Hilmar Gudmundsson ◽  
Thomas Nagler ◽  
Jan Wuite

Abstract. Despite the potentially detrimental impact of large-scale calving events on the geometry and ice flow of the Antarctic Ice Sheet, little is known about the processes that drive rift formation prior to calving, or what controls the timing of these events. The Brunt Ice Shelf in East Antarctica presents a rare natural laboratory to study these processes, following the recent formation of two rifts, each now exceeding 50 km in length. Here we use a unique 50-years' time series of in-situ and remote sensing observations, together with numerical modelling, to reveal how slow changes in ice shelf geometry over time caused build-up of mechanical tension far upstream of the ice front, and culminated in rift formation and a significant speed-up of the ice shelf. These internal feedbacks, whereby ice shelves generate the very conditions that lead to their own (partial) disintegration are currently missing from ice flow models, which severely limits their ability to accurately predict future sea level rise.


2018 ◽  
Author(s):  
Veronika Emetc ◽  
Paul Tregoning ◽  
Mathieu Morlighem ◽  
Chris Borstad ◽  
Malcolm Sambridge

Abstract. Antarctica and Greenland hold enough ice to raise sea level by more than 65 m if they were to melt completely. Predicting future ice sheet mass balance depends on our ability to model these ice sheets, which is limited by our current understanding of several key physical processes, such as iceberg calving. Large-scale ice flow models either ignore this process or represent it crudely. To model fracture formation, which is an important component of many calving models, Continuum Damage Mechanics as well as Linear Fracture Mechanics are commonly used. However, these methods applied across the Antarctic continent have a large number of uncertainties. Here we present an alternative, statistics-based method to model the most probable zones of nucleation of fractures. We test this approach on all main ice shelf regions in Antarctica, including the Antarctic Peninsula. We can model up to 99 % of observed fractures, with an average rate of 84 % for grounded ice and 61 % for floating ice and mean overestimation error of 26 % and 20 %, respectively, thus providing the basis for modelling calving of ice shelves. We find that Antarctic ice shelves can be classified into groups based on the factors that control fracture location. The factors that trigger fracturing as well as sustain existing fractures advected from upstream vary from one ice shelf to another.


2010 ◽  
Vol 51 (55) ◽  
pp. 97-102 ◽  
Author(s):  
J. Wendt ◽  
A. Rivera ◽  
A. Wendt ◽  
F. Bown ◽  
R. Zamora ◽  
...  

AbstractRegional climate warming has caused several ice shelves on the Antarctic Peninsula to retreat and ultimately collapse during recent decades. Glaciers flowing into these retreating ice shelves have responded with accelerating ice flow and thinning. The Wordie Ice Shelf on the west coast of the Antarctic Peninsula was reported to have undergone a major areal reduction before 1989. Since then, this ice shelf has continued to retreat and now very little floating ice remains. Little information is currently available regarding the dynamic response of the glaciers feeding the Wordie Ice Shelf, but we describe a Chilean International Polar Year project, initiated in 2007, targeted at studying the glacier dynamics in this area and their relationship to local meteorological conditions. Various data were collected during field campaigns to Fleming Glacier in the austral summers of 2007/08 and 2008/09. In situ measurements of ice-flow velocity first made in 1974 were repeated and these confirm satellite-based assessments that velocity on the glacier has increased by 40–50% since 1974. Airborne lidar data collected in December 2008 can be compared with similar data collected in 2004 in collaboration with NASA and the Chilean Navy. This comparison indicates continued thinning of the glacier, with increasing rates of thinning downstream, with a mean of 4.1 ± 0.2 m a−1 at the grounding line of the glacier. These comparisons give little indication that the glacier is achieving a new equilibrium.


2018 ◽  
Vol 12 (10) ◽  
pp. 3187-3213 ◽  
Author(s):  
Veronika Emetc ◽  
Paul Tregoning ◽  
Mathieu Morlighem ◽  
Chris Borstad ◽  
Malcolm Sambridge

Abstract. Antarctica and Greenland hold enough ice to raise sea level by more than 65 m if both ice sheets were to melt completely. Predicting future ice sheet mass balance depends on our ability to model these ice sheets, which is limited by our current understanding of several key physical processes, such as iceberg calving. Large-scale ice flow models either ignore this process or represent it crudely. To model fractured zones, an important component of many calving models, continuum damage mechanics as well as linear fracture mechanics are commonly used. However, these methods have a large number of uncertainties when applied across the entire Antarctic continent because the models were typically tuned to match processes seen on particular ice shelves. Here we present an alternative, statistics-based method to model the most probable zones of the location of fractures and demonstrate our approach on all main ice shelf regions in Antarctica, including the Antarctic Peninsula. We can predict the location of observed fractures with an average success rate of 84 % for grounded ice and 61 % for floating ice and a mean overestimation error rate of 26 % and 20 %, respectively. We found that Antarctic ice shelves can be classified into groups based on the factors that control fracture location.


2017 ◽  
Vol 11 (6) ◽  
pp. 2543-2554 ◽  
Author(s):  
Sainan Sun ◽  
Stephen L. Cornford ◽  
John C. Moore ◽  
Rupert Gladstone ◽  
Liyun Zhao

Abstract. Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.


2021 ◽  
Author(s):  
Reinhard Drews ◽  
Christian Wild ◽  
Oliver Marsh ◽  
Wolfgang Rack ◽  
Todd Ehlers ◽  
...  

<p>Dynamics of polar outlet glaciers vary with ocean tides, providing a natural laboratory to understand basal processes beneath ice streams, ice rheology and ice-shelf buttressing. We apply Terrestrial Radar Interferometry to close the spatiotemporal gap between localized, temporally well-resolved GNSS and area-wide but sparse satellite observations. Three-hour flowfields collected over an eight day period at Priestley Glacier, Antarctica, validate and provide the spatial context for concurrent GNSS measurements. Ice flow is fastest during falling tides and slowest during rising tides. Principal components of the timeseries prove upstream propagation of tidal signatures $>$ 10 km away from the grounding line. Hourly, cm-scale horizontal and vertical flexure patterns occur $>$6 km upstream of the grounding line. Vertical uplift upstream of the grounding line is consistent with ephemeral re-grounding during low-tide impacting grounding-zone stability. On the freely floating ice shelves, we find velocity peaks both during high- and low-tide suggesting that ice-shelf buttressing varies temporally as a function of flexural bending from tidal displacement. Taken together, these observations identify tidal imprints on ice-stream dynamics on new temporal and spatial scales providing constraints for models designed to isolate dominating processes in ice-stream and ice-shelf mechanics.</p>


2015 ◽  
Vol 9 (2) ◽  
pp. 1461-1502
Author(s):  
J. J. Fürst ◽  
G. Durand ◽  
F. Gillet-Chaulet ◽  
N. Merino ◽  
L. Tavard ◽  
...  

Abstract. In ice flow modelling, the use of control methods to assimilate the dynamic and geometric state of an ice body has become common practice. These methods have primarily focussed on inverting for one of the two least known properties in glaciology, namely the basal friction coefficient or the ice viscosity parameter. Here, we present an approach to infer both properties simultaneously for the whole of the Antarctic ice sheet. During the assimilation, the root-mean-square deviation between modelled and observed surface velocities is reduced to 12.3 m a−1, with a value of 16.4 m a−1 for the ice shelves. An exception in terms of the velocity mismatch is the Thwaites Glacier ice shelf, where the RMS value attains almost 80 m a−1. The reason is that the underlying BEDMAP2 geometry ignores the presence of an ice rise, that exerts major control on the dynamics of the eastern part of the ice shelf. On these grounds, we suggest an approach to account for pinning points not included in BEDMAP2 by locally allowing an optimisation of basal friction during the inversion. In this way, the velocity mismatch on the Thwaites ice shelf is more than halved. A characteristic velocity mismatch pattern emerges for unaccounted pinning points close to the marine shelf front. This pattern is exploited to manually identify 7 uncharted features around Antarctica that exert significant resistance to the shelf flow. Potential pinning points are detected on Fimbul, West, Shakelton, Nickerson and Venable ice shelves. As pinning points can provide substantial resistance to shelf flow, with considerable consequences if they became ungrounded in the future, the model community is in need of detailed bathymetry there. Our data assimilation points to some of these dynamically important features, not present in BEDMAP2, and implicitly quantifies their relevance.


2015 ◽  
Vol 27 (5) ◽  
pp. 511-523 ◽  
Author(s):  
M.L. Pittard ◽  
J.L. Roberts ◽  
C.S. Watson ◽  
B.K. Galton-Fenzi ◽  
R.C. Warner ◽  
...  

AbstractMonitoring the rate of ice flow into ice shelves is vital to understanding how, where and when mass changes occur in Antarctica. Previous observations of ice surface velocity indicate that the Amery Ice Shelf and tributary glaciers have been relatively stable over the period 1968 to 1999. This study measured the displacement of features on the ice surface over a sequence of Landsat 7 images separated by approximately one year and spanning 2004 to 2012 using the surface feature tracking software IMCORR. The focus is on the region surrounding the southern grounding zone of the Amery Ice Shelf and its primary tributary glaciers: the Fisher, Lambert and Mellor glaciers. No significant changes in surface velocity were observed over this period. Accordingly, the velocity fields from each image pair between 2004 and 2012 were used to synthesize an average velocity dataset of the Amery Ice Shelf region and to compare it to previously published velocity datasets and in situ global positioning system velocity observations. No significant change in ice surface velocities was found between 2004 and 2012 in the Amery Ice Shelf region, which suggests that it continues to remain stable.


2016 ◽  
Vol 62 (231) ◽  
pp. 37-45 ◽  
Author(s):  
SOPHIE BERGER ◽  
LIONEL FAVIER ◽  
REINHARD DREWS ◽  
JEAN-JACQUES DERWAEL ◽  
FRANK PATTYN

ABSTRACTAntarctic ice shelves are buttressed by numerous pinning points attaching to the otherwise freely-floating ice from below. Some of these kilometric-scale grounded features are unresolved in Antarctic-wide datasets of ice thickness and bathymetry, hampering ice flow models to fully capture dynamics at the grounding line and upstream. We investigate the role of an 8.7 km2 pinning point at the front of the Roi Baudouin Ice Shelf, East Antarctica. Using ERS interferometry and ALOS-PALSAR speckle tracking, we derive, on a 125 m grid spacing, surface velocities deviating by −5.2 ± 4.5 m a−1 from 37 on-site global navigation satellite systems-derived velocities. We find no evidence for ice flow changes on decadal time scales and we show that ice on the pinning point virtually stagnates, deviating the ice stream and causing enhanced horizontal shearing upstream. Using the BISICLES ice-flow model, we invert for basal friction and ice rigidity with three input scenarios of ice velocity and geometry. We show that inversion results are the most sensitive to the presence/absence of the pinning point in the bathymetry; surface velocities at the pinning point are of secondary importance. Undersampling of pinning points results in erroneous ice-shelf properties in models initialised by control methods. This may impact prognostic modelling for ice-sheet evolution in the case of unpinning.


2021 ◽  
Vol 15 (1) ◽  
pp. 113-132
Author(s):  
Jan De Rydt ◽  
Ronja Reese ◽  
Fernando S. Paolo ◽  
G. Hilmar Gudmundsson

Abstract. Pine Island Glacier in West Antarctica is among the fastest changing glaciers worldwide. Over the last 2 decades, the glacier has lost in excess of a trillion tons of ice, or the equivalent of 3 mm of sea level rise. The ongoing changes are thought to have been triggered by ocean-induced thinning of its floating ice shelf, grounding line retreat, and the associated reduction in buttressing forces. However, other drivers of change, such as large-scale calving and changes in ice rheology and basal slipperiness, could play a vital, yet unquantified, role in controlling the ongoing and future evolution of the glacier. In addition, recent studies have shown that mechanical properties of the bed are key to explaining the observed speed-up. Here we used a combination of the latest remote sensing datasets between 1996 and 2016, data assimilation tools, and numerical perturbation experiments to quantify the relative importance of all processes in driving the recent changes in Pine Island Glacier dynamics. We show that (1) calving and ice shelf thinning have caused a comparable reduction in ice shelf buttressing over the past 2 decades; that (2) simulated changes in ice flow over a viscously deforming bed are only compatible with observations if large and widespread changes in ice viscosity and/or basal slipperiness are taken into account; and that (3) a spatially varying, predominantly plastic bed rheology can closely reproduce observed changes in flow without marked variations in ice-internal and basal properties. Our results demonstrate that, in addition to its evolving ice thickness, calving processes and a heterogeneous bed rheology play a key role in the contemporary evolution of Pine Island Glacier.


Sign in / Sign up

Export Citation Format

Share Document