scholarly journals Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data

2018 ◽  
Vol 12 (8) ◽  
pp. 2727-2740 ◽  
Author(s):  
Vasiliy Tikhonov ◽  
Ilya Khvostov ◽  
Andrey Romanov ◽  
Evgeniy Sharkov

Abstract. The paper presents a theoretical analysis of seasonal brightness temperature variations at a number of large freshwater lakes: Baikal, Ladoga, Great Bear Lake (GBL), Great Slave Lake (GSL), and Huron, retrieved from Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) data (1.4 GHz) of the Soil Moisture and Ocean Salinity (SMOS) satellite. The analysis was performed using the model of microwave radiation of plane layered heterogeneous nonisothermal medium. The input parameters for the model were real regional climatological characteristics and glaciological parameters of ice cover of the study lakes. Three distinct seasonal brightness temperature time regions corresponding to different phenological phases of the lake surfaces: complete ice cover, ice melt and deterioration, and open water were revealed. The paper demonstrates the possibility to determine the beginning of ice cover deterioration from satellite microwave radiometry data. The obtained results can be useful for setting the operating terms of winter crossings and roads on ice, as with the beginning of ice deterioration, these transportation routes across water bodies (rivers, lakes, water reservoirs) become insecure and cannot be used any more.

2018 ◽  
Author(s):  
Vasiliy Tikhonov ◽  
Ilya Khvostov ◽  
Andrey Romanov ◽  
Evgeniy Sharkov

Abstract. The paper presents a theoretical analysis of seasonal brightness temperature variations at a number of large freshwater lakes – Baikal, Ladoga, Great Bear Lake (GBL), Great Slave Lake (GSL), and Huron – retrieved from Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) data (1.4 GHz) of the Soil Moisture and Ocean Salinity (SMOS) satellite. The analysis was performed using the model of microwave radiation of plane layered heterogeneous nonisothermal medium. The input parameters for the model were real regional climatological characteristics and glaciological parameters of ice cover of the study lakes. Three distinct seasonal brightness temperature time regions corresponding to different phenological phases of the lake surfaces: complete ice cover, ice melt and deterioration, and open water, were revealed. The paper demonstrates the possibility to determine the beginning of ice cover deterioration from satellite microwave radiometry data. The obtained results can be useful for setting the operating terms of winter crossings and roads on ice, since with the beginning of ice deterioration, these transportation routes across water bodies (rivers, lakes, water reservoirs) become insecure and cannot be used any more.


2020 ◽  
Vol 12 (6) ◽  
pp. 967 ◽  
Author(s):  
Jawad Ziyad ◽  
Kalifa Goïta ◽  
Ramata Magagi ◽  
Fabien Blarel ◽  
Frédéric Frappart

Owing to its temporal resolution of 10-day and its polar orbit allowing several crossings over large lakes, the US National Aeronautics and Space Administration (NASA) and the French Centre National d’Etudes Spatiales (CNES) missions including Topex/Poseidon, Jason-1/2/3 demonstrated strong capabilities for the continuous and long-term monitoring (starting in 1992) of large and medium-sized water bodies. However, the presence of heterogeneous targets in the altimeter footprint, such as ice cover in boreal areas, remains a major issue to obtain estimates of water level over subarctic lakes of similar accuracy as over other inland water bodies using satellite altimetry (i.e., R ≥ 0.9 and RMSE ≤ 10 to 20 cm when compared to in-situ water stages). In this study, we aim to automatically identify the Jason-2 altimetry measurements corresponding to open water, ice and transition (water-ice) to improve the estimations of water level during freeze and thaw periods using only the point measurements of open water. Four Canadian lakes were selected to analyze active (waveform parameters) and passive (brightness temperature) microwave data acquired by the Jason-2 radar altimetry mission: Great Slave Lake, Lake Athabasca, Lake Winnipeg, and Lake of the Woods. To determine lake surface states, backscattering coefficient and peakiness at Ku-band derived from the radar altimeter waveform and brightness temperature at 18.7 and 37 GHz measured by the microwave radiometer contained in the geophysical data records (GDR) of Jason-2 were used in two different unsupervised classification techniques to define the thresholds of discrimination between open water and ice measurements. K-means technique provided better results than hierarchical clustering based upon silhouette criteria and the Calinski-Harabz index. Thresholds of discrimination between ice and water were validated with the Normalized Difference Snow Index (NDSI) snow cover products of the MODIS satellite. The use of open water threshold resulted in improved water level estimation compared to in situ water stages, especially in the presence of ice. For the four lakes, the Pearson coefficient (r) increased on average from about 0.8 without the use of the thresholds to more than 0.90. The unbiased RMSE were generally lower than 20 cm when the threshold of open water was used and more than 22 cm over smaller lakes, without using the thresholds.


2021 ◽  
pp. 78-85
Author(s):  
А. G. Grankov ◽  
◽  
А. А. Milshin ◽  

An accuracy of reproduction of daily variations in the ocean–atmosphere system brightness temperature in the areas of development and movement of tropical hurricanes in the Caribbean Sea and Gulf of Mexico is analyzed. The analysis is based on the data of single and group satellite microwave radiometer measurements. The results are obtained using archival measurement data of SSM/I radiometers from the F11, F13, F14, and F15 DMSP satellites during the period of existence of tropical hurricanes Bret and Wilma. An example is given to demonstrate the use of daily brightness temperatures obtained from DMSP satellites for monitoring the development and propagation of hurricane Wilma.


2018 ◽  
Vol 29 ◽  
pp. 27-39
Author(s):  
István Gyulai ◽  
Csilla Lakatos ◽  
János Tamás Kundrát ◽  
Zsuzsanna Balogh ◽  
Edina Simon ◽  
...  

We assessed the usefulness of Cladocera remains for establishing the ecological status of oxbows and also tested the association of Cladocera species with various vegetation types. Cladocera remains were collected from the surface sediment of four habitat types (tangled vegetation, open water, reeds and tunnels) and 15 physical and chemical parameters of surface water were studied. In the surface sediment samples, we identified 32 Cladocera taxa. There was a significant difference in the number of species amongst habitat types as per ANOVA. The benthic and plant associated Cladocera communities of reeds, tangled vegetation, open water and tunnels were clearly separated from each other by NMDS ordination. CCA showed that habitat types had characteristic Cladocera species: Pleuroxus species were frequent in the tangled vegetation habitat, while Chydorus species were frequent in the open water. Remarkably, in reeds, Bosmina species were frequent, although these species are usually common in open water. Specimens of the Alona genus were found everywhere. Our findings suggest that the remains of Cladocera species may be useful indicators to assess and monitor the structure of freshwater lakes.


arktos ◽  
2020 ◽  
Vol 6 (1-3) ◽  
pp. 55-73 ◽  
Author(s):  
Jeetendra Saini ◽  
Ruediger Stein ◽  
Kirsten Fahl ◽  
Jens Weiser ◽  
Dierk Hebbeln ◽  
...  

AbstractArctic sea ice is a critical component of the climate system, known to influence ocean circulation, earth’s albedo, and ocean–atmosphere heat and gas exchange. Current developments in the use of IP25 (a sea ice proxy with 25 carbon atoms only synthesized by Arctic sea ice diatoms) have proven it to be a suitable proxy for paleo-sea ice reconstructions over hundreds of thousands to even millions of years. In the NE Baffin Bay, off NW Greenland, Melville Bugt is a climate-sensitive region characterized by strong seasonal sea ice variability and strong melt-water discharge from the Greenland Ice Sheet (GIS). Here, we present a centennial-scale resolution Holocene sea ice record, based on IP25 and open-water phytoplankton biomarkers (brassicasterol, dinosterol and HBI III) using core GeoB19927-3 (73° 35.26′ N, 58° 05.66′ W). Seasonal to ice-edge conditions near the core site are documented for most of the Holocene period with some significant variability. In the lower-most part, a cold interval characterized by extensive sea ice cover and very low local productivity is succeeded by an interval (~ 9.4–8.5 ka BP) with reduced sea ice cover, enhanced GIS spring melting, and strong influence of the West Greenland Current (WGC). From ~ 8.5 until ~ 7.8 ka BP, a cooling event is recorded by ice algae and phytoplankton biomarkers. They indicate an extended sea ice cover, possibly related to the opening of Nares Strait, which may have led to an increased influx of Polar Water into NE-Baffin Bay. The interval between ~ 7.8 and ~ 3.0 ka BP is characterized by generally reduced sea ice cover with millennial-scale variability of the (late winter/early spring) ice-edge limit, increased open-water conditions (polynya type), and a dominant WGC carrying warm waters at least as far as the Melville Bugt area. During the last ~ 3.0 ka BP, our biomarker records do not reflect the late Holocene ‘Neoglacial cooling’ observed elsewhere in the Northern Hemisphere, possibly due to the persistent influence of the WGC and interactions with the adjacent fjords. Peaks in HBI III at about ~ 2.1 and ~ 1.3 ka BP, interpreted as persistent ice-edge situations, might correlate with the Roman Warm Period (RWP) and Medieval Climate Anomaly (MCA), respectively, in-phase with the North Atlantic Oscillation (NAO) mode. When integrated with marine and terrestrial records from other circum-Baffin Bay areas (Disko Bay, the Canadian Arctic, the Labrador Sea), the Melville Bugt biomarker records point to close ties with high Arctic and Northern Hemispheric climate conditions, driven by solar and oceanic circulation forcings.


1982 ◽  
Vol 3 ◽  
pp. 12-16 ◽  
Author(s):  
I. Allison ◽  
C.M. Tivendale ◽  
G.J. Akerman ◽  
J.M. Tann ◽  
R.H. Wills

Seasonal variations in radiative and turbulent fluxes at the surface of, and in the heat transfer within, sea ice are discussed from results of energy balance studies at a site of annual ice cover near Mawson, Antarctica. In mid-summer, the open water gains heat mostly by radiation but by early February the ocean is cooling predominantly by strong turbulent losses, with some radiative heat loss occurring also by March. When an ice cover forms, turbulent fluxes decrease from several 100 W m−2over open water to only 40 w m−2over ice less than 0.2 m thick and even less over thicker ice.Net radiative losses over mature ice in mid-winter are balanced mostly by conduction through the ice cover but with some turbulent heat gain at the surface. By mid-spring, there is a net radiative gain, the turbulent fluxes are again outgoing, and there is little total heat transfer through the ice. At break-out, the albedo increase from ice to open water causes a large increase in the net radiative gain.At the lower boundary of the ice, the oceanic heat flux provides an important contribution. A net advection of heat into the region is shown from temperature profiles in the water under the ice. Salinity changes in the water during the period of ice melt are also discussed.


2019 ◽  
Vol 11 (17) ◽  
pp. 2059 ◽  
Author(s):  
Rasa Idzelytė ◽  
Igor E. Kozlov ◽  
Georg Umgiesser

A first-ever spatially detailed record of ice cover conditions in the Curonian Lagoon (CL), Europe’s largest coastal lagoon located in the southeastern Baltic Sea, is presented. The multi-mission synthetic aperture radar (SAR) measurements acquired in 2002–2017 by Envisat ASAR, RADARSAT-2, Sentinel-1 A/B, and supplemented by the cloud-free moderate imaging spectroradiometer (MODIS) data, are used to document the ice cover properties in the CL. As shown, satellite observations reveal a better performance over in situ records in defining the key stages of ice formation and decay in the CL. Using advantages of both data sources, an updated ice season duration (ISD) record is obtained to adequately describe the ice cover season in the CL. High-resolution ISD maps provide important spatial details of ice growth and decay in the CL. As found, ice cover resides longest in the south-eastern CL and along the eastern coast, including the Nemunas Delta, while the shortest ice season is observed in the northern CL. During the melting season, the ice melt pattern is clearly shaped by the direction of prevailing winds, and ice drift velocities obtained from a limited number of observations range within 0.03–0.14 m/s. The pronounced shortening of the ice season duration in the CL is observed at a rate of 1.6–2.3 days year‒1 during 2002–2017, which is much higher than reported for the nearby Baltic Sea regions. While the timing of the freeze onset and full freezing has not changed much, the dates of the final melt onset and last observation of ice have a clear decreasing pattern toward an earlier ice break-up and complete melt-off due to an increase of air temperature strongly linked to the North Atlantic Oscillation (NAO). Notably, the correlation between the ISD, air temperature, and winter NAO index is substantially higher when considering the lagoon-averaged ISD values derived from satellite observations compared to those derived from coastal records. The latter clearly demonstrated the richness of the satellite observations that should definitely be exploited in regional ice monitoring programs.


Sign in / Sign up

Export Citation Format

Share Document