scholarly journals The vertical structure of precipitation at two stations in East Antarctica derived from micro rain radars

2019 ◽  
Vol 13 (1) ◽  
pp. 247-264 ◽  
Author(s):  
Claudio Durán-Alarcón ◽  
Brice Boudevillain ◽  
Christophe Genthon ◽  
Jacopo Grazioli ◽  
Niels Souverijns ◽  
...  

Abstract. Precipitation over Antarctica is the main term in the surface mass balance of the Antarctic ice sheet, which is crucial for the future evolution of the sea level worldwide. Precipitation, however, remains poorly documented and understood mainly because of a lack of observations in this extreme environment. Two observatories dedicated to precipitation have been set up at the Belgian station Princess Elisabeth (PE) and at the French station Dumont d'Urville (DDU) in East Antarctica. Among other instruments, both sites have a vertically pointing micro rain radar (MRR) working at the K band. Measurements have been continuously collected at DDU since the austral summer of 2015–2016, while they have been collected mostly during summer seasons at PE since 2010, with a full year of observation during 2012. In this study, the statistics of the vertical profiles of reflectivity, vertical velocity, and spectral width are analyzed for all seasons. Vertical profiles were separated into surface precipitation and virga to evaluate the impact of virga on the structure of the vertical profiles. The climatology of the study area plays an important role in the structure of the precipitation: warmer and moister atmospheric conditions at DDU favor the occurrence of more intense precipitation compared with PE, with a difference of 8 dBZ between both stations. The strong katabatic winds blowing at DDU induce a decrease in reflectivity close to the ground due to the sublimation of the snowfall particles. The vertical profiles of precipitation velocity show significant differences between the two stations. In general, at DDU the vertical velocity increases as the height decreases, while at PE the vertical velocity decreases as the height decreases. These features of the vertical profiles of reflectivity and vertical velocity could be explained by the more frequent occurrence of aggregation and riming at DDU compared to PE because of the lower temperature and relative humidity at the latter, located further in the interior. Robust and reliable statistics about the vertical profile of precipitation in Antarctica, as derived from MRRs for instance, are necessary and valuable for the evaluation of precipitation estimates derived from satellite measurements and from numerical atmospheric models.

2018 ◽  
Author(s):  
Claudio Durán-Alarcón ◽  
Brice Boudevillain ◽  
Christophe Genthon ◽  
Jacopo Grazioli ◽  
Niels Souverijns ◽  
...  

Abstract. Precipitation over Antarctica is the main term in the surface mass balance of the Antarctic ice sheet, which is crucial for the future evolution of the sea level worldwide. Precipitation however remains poorly documented and understood mainly because of a lack of observations in this extreme environment. Two observatories dedicated to precipitation have been set up at the Belgian station Princess Elisabeth (PE) and at the French station Dumont d'Urville (DDU) in East Antarctica. Among other instruments, both sites have a vertically-pointing micro rain radar (MRR) working at the K-band. Measurements are continuously collected at DDU since the austral summer 2015–2016, while they have been collected mostly during summer seasons at PE since 2010, with a full year of observation during 2012. In this study, the statistics of the vertical profiles of reflectivity, vertical velocity and spectral width are analyzed for all seasons. Vertical profiles were separated into surface precipitation and virga to evaluate the impact of virga on the structure of the vertical profiles. The climatology of the study area plays an important role in the structure of the precipitation: warmer and moister atmospheric conditions at DDU favor the occurrence of more intense precipitation compared with PE, with a difference of 8 dBZ between both stations. The strong katabatic winds blowing at DDU induce a decrease of reflectivity close to the ground due to the sublimation of the snowfall particles. The vertical profiles of precipitation velocity show significant differences between the two stations. In general, at DDU the vertical velocity increases as the height decreases, while at PE the vertical velocity decreases as the height decrease. These features of the vertical profiles of reflectivity and vertical velocity could be explained by the more frequent occurrence of aggregation and riming at DDU compared to PE, because of the colder and drier conditions at the latter. Robust and reliable statistics about the vertical profile of precipitation in Antarctica, as derived from micro rain radars for instance, are necessary and valuable for the evaluation of precipitation estimates derived from satellite measurements and from numerical atmospheric models.


Ocean Science ◽  
2016 ◽  
Vol 12 (4) ◽  
pp. 1003-1011 ◽  
Author(s):  
Bàrbara Barceló-Llull ◽  
Evan Mason ◽  
Arthur Capet ◽  
Ananda Pascual

Abstract. An innovative approach is used to analyze the impact of vertical velocities associated with quasi-geostrophic (QG) dynamics on the redistribution and uptake of nitrate in the southeast Pacific (SEP). A total of 12 years of vertical and horizontal currents are derived from an observation-based estimate of the ocean state. Horizontal velocities are obtained through the application of thermal wind balance to weekly temperature and salinity fields. Vertical velocities are estimated by integration of the QG omega equation. Seasonal variability of the synthetic vertical velocity and kinetic energy associated with the horizontal currents is coincident, with peaks in austral summer (November–December) in accord with published observations. The impact of vertical velocity on SEP nitrate uptake rates is assessed by using two Lagrangian particle tracking experiments that differ according to vertical forcing (ω = ωQG vs. ω = 0). From identical initial distributions of nitrate-tagged particles, the Lagrangian results show that vertical motions induce local increases in nitrate uptake reaching up to 30 %. Such increases occur in low uptake regions with high mesoscale activity. Despite being weaker than horizontal currents by a factor of up to 10−4, vertical velocity associated with mesoscale activity is demonstrated to make an important contribution to nitrate uptake, hence productivity, in low uptake regions.


2021 ◽  
Author(s):  
John King ◽  
Gareth Marshall ◽  
Steve Colwell ◽  
Clare Allen-Sader ◽  
Tony Phillips

<p> </p><p>Global atmospheric reanalyses are frequently used to drive ocean-ice models but few data are available to assess the quality of these products in the Antarctic sea ice zone. We utilise measurements from three drifting buoys that were deployed on sea ice in the southern Weddell Sea in the austral summer of 2016 to validate the representation of near-surface atmospheric conditions in the ERA-Interim and ERA5 reanalyses produced by the European Centre for Medium Range Weather Forecasts (ECMWF). The buoys carried sensors to measure atmospheric pressure, air temperature and humidity, wind speed and direction, and downwelling shortwave and longwave radiation. One buoy remained in coastal fast ice for most of 2016 while the other two drifted northward through the austral winter and exited the pack ice during the following austral summer. Comparison of buoy measurements with reanalysis data indicates that both reanalyses represent the surface pressure field in this region accurately. Reanalysis temperatures are, however, biased warm by around 2 °C in both products, with the largest biases seen at the lowest temperatures. We suggest that this bias is a result of the simplified representation of sea ice in the reanalyses, in particular the lack of an insulating snow layer on top of the ice. We use a simple surface energy balance model to investigate the impact of the reanalysis biases on sea ice thermodynamics.</p>


2015 ◽  
Vol 12 (5) ◽  
pp. 2257-2281
Author(s):  
B. Barceló-Llull ◽  
E. Mason ◽  
A. Pascual

Abstract. An innovative approach is used to analyse the impact of vertical velocities associated with quasi-geostrophic (QG) dynamics on the distribution of a passive nutrient tracer (nitrate) in the South East Pacific. Twelve years of vertical and horizontal currents are derived from an observation-based estimate of the ocean state. Horizontal velocities are obtained through application of thermal wind balance to weekly temperature and salinity fields. Vertical velocities are estimated by integration of the QG Omega equation. Seasonal variability of the synthetic vertical velocity and kinetic energy associated with the horizontal currents are coincident, with peaks in austral summer (November–December) in accord with published observations. Two ensembles of Lagrangian particle tracking experiments that differ according to vertical forcing (w = wQG vs. w = 0) enable a quantitative analysis of the impact of the vertical velocity. From identical initial distributions of nitrate-tagged particles, the Lagrangian results show that the impact of vertical advection on nutrient distribution is 30 % of the contribution of horizontal advection. Despite being weaker by a factor of up to 10−4 than the horizontal currents, vertical velocity is demonstrated to make an important contribution to nutrient distributions in the region of study.


2021 ◽  
Author(s):  
Mathieu Casado ◽  
Christophe Leroy-Dos Santos ◽  
Elise Fourré ◽  
Vincent Favier ◽  
Cécile Agosta ◽  
...  

<p>Stable water isotopes are effective hydrological tracers due to fractionation processes throughout the water cycle, and thus, the stable isotopes from ice cores can serve as valuable proxies for past changes in the climate and local environment of polar regions. Proper interpretation of these isotopes requires to understand the influence of each potential fractionating process, such as initial evaporation over the ocean and precipitation events, but also the effects of post-depositional exchange between snow and moisture in the atmosphere. Thanks to new developments in infrared spectroscopy, it is now possible to continuously monitor the isotopic composition of atmospheric water vapor in coordination with discrete snow sampling. This allows us to readily document the isotopic and mass exchanges between snow and vapor as well as the stability of the atmospheric boundary layer, as has recently been shown on the East Antarctic Plateau at Kohnen (Ritter et al., TC, 2016) and Dome C (Casado et al., ACP, 2016) stations where substantial diurnal isotopic variations have been recorded.</p><p>In this study, we present the first vapor monitoring of an East Antarctic transect that covered more than 3600 km over a period of 3 months from November 2019 to February 2020 as part of the EAIIST mission. The isotopic record therefore describes the evolution from typical coastal values to highly depleted values deep inside the continent on the high-altitude plateau. In parallel, we also monitored the vapor isotopic composition at two stations: the coastal starting point of Dumont D’Urville (DDU) and the plateau halfway point of Dome C. Two automatic weather stations (at Paleo and Megadunes sites) were also installed in a previously unexplored region of the East Antarctic plateau that was covered by this transect. This suite of cross-calibrated vapor isotope observations and weather stations, coupled with Modele Atmospherique Régional (MAR) climate modeling, offers a unique opportunity to compare the spatial and temporal gradients of humidity, temperature, and water vapor isotopic composition in East Antarctica during the summer season, and to estimate how the water vapour isotope measurements at Dome C and DDU are representative of the conditions in East Antarctica. The quantitative agreement between the EAIIST record and those recorded at DDU and Dome C stations at the times the raid was nearby, gives confidence in the quality of the results acquired on this traverse. Although further comparisons with the surface snow isotopic composition are required to quantify the impact of the snow-atmosphere exchanges on the local surface mass balance, these initial results of vapor isotopic composition show the potential of using water stables isotopes to evaluate hydrological processes in East Antarctica and better reconstruct past climate changes through ice cores.</p>


2008 ◽  
Vol 65 (6) ◽  
pp. 1721-1748 ◽  
Author(s):  
A. P. Khain ◽  
N. BenMoshe ◽  
A. Pokrovsky

Abstract The simulation of the dynamics and the microphysics of clouds observed during the Large-Scale Biosphere–Atmosphere Experiment in Amazonia—Smoke, Aerosols, Clouds, Rainfall, and Climate (LBA–SMOCC) campaign, as well as extremely continental and extremely maritime clouds, is performed using an updated version of the Hebrew University spectral microphysics cloud model (HUCM). A new scheme of diffusional growth allows the reproduction of in situ–measured droplet size distributions including those formed in extremely polluted air. It was shown that pyroclouds forming over the forest fires can precipitate. Several mechanisms leading to formation of precipitation from pyroclouds are considered. The mechanisms by which aerosols affect the microphysics and precipitation of warm cloud-base clouds have been investigated by analyzing the mass, heat, and moisture budgets. The increase in aerosol concentration increases both the generation and the loss of the condensate mass. In the clouds developing in dry air, the increase in the loss is dominant, which suggests a decrease in the accumulated precipitation with the aerosol concentration increase. On the contrary, an increase in aerosol concentration in deep maritime clouds leads to an increase in precipitation. The precipitation efficiency of clouds in polluted air is found to be several times lower than that of clouds forming in clean air. A classification of the results of aerosol effects on precipitation from clouds of different types developing in the atmosphere with high freezing level (about 4 km) is proposed. The role of air humidity and other factors in precipitation’s response to aerosols is discussed. The analysis shows that many discrepancies between the results reported in different observational and numerical studies can be attributed to the different atmospheric conditions and cloud types analyzed.


2021 ◽  
pp. 1-10
Author(s):  
Alexey A. Ekaykin ◽  
Alexey V. Bolshunov ◽  
Vladimir Ya. Lipenkov ◽  
Mirko Scheinert ◽  
Lutz Eberlein ◽  
...  

Abstract The region of Ridge B in central East Antarctica is one of the last unexplored parts of the continent and, at the same time, ranks among the most promising places to search for Earth's oldest ice. In January 2020, we carried out the first scientific traverse from Russia's Vostok Station to the topographical dome of Ridge B (Dome B, 3807 m above sea level, 79.02°S, 93.69°E). The glaciological programme included continuous snow-radar profiling and geodetic positioning along the traverse's route, installation of snow stakes, measurements of snow density, collection of samples for stable water isotope and chemical analyses and drilling of a 20 m firn core. The first results of the traverse show that the surface mass balance at Dome B (2.28 g cm−2 year−1) is among the lowest in Antarctica. The firn temperature below the layer of annual variations is −58.1 ± 0.2°C. A very low value of heavy water stable isotope content (-58.2‰ for oxygen-18) was discovered at a distance of 170 km from Vostok Station. This work is the first step towards a comprehensive reconnaissance study of the Ridge B area aimed at locating the best site for future deep drilling for the oldest Antarctic ice.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 217
Author(s):  
Jiangping Zhu ◽  
Aihong Xie ◽  
Xiang Qin ◽  
Yetang Wang ◽  
Bing Xu ◽  
...  

The European Center for Medium-Range Weather Forecasts (ECMWF) released its latest reanalysis dataset named ERA5 in 2017. To assess the performance of ERA5 in Antarctica, we compare the near-surface temperature data from ERA5 and ERA-Interim with the measured data from 41 weather stations. ERA5 has a strong linear relationship with monthly observations, and the statistical significant correlation coefficients (p < 0.05) are higher than 0.95 at all stations selected. The performance of ERA5 shows regional differences, and the correlations are high in West Antarctica and low in East Antarctica. Compared with ERA5, ERA-Interim has a slightly higher linear relationship with observations in the Antarctic Peninsula. ERA5 agrees well with the temperature observations in austral spring, with significant correlation coefficients higher than 0.90 and bias lower than 0.70 °C. The temperature trend from ERA5 is consistent with that from observations, in which a cooling trend dominates East Antarctica and West Antarctica, while a warming trend exists in the Antarctic Peninsula except during austral summer. Generally, ERA5 can effectively represent the temperature changes in Antarctica and its three subregions. Although ERA5 has bias, ERA5 can play an important role as a powerful tool to explore the climate change in Antarctica with sparse in situ observations.


2015 ◽  
Vol 54 (7) ◽  
pp. 1393-1412 ◽  
Author(s):  
Dale T. Andersen ◽  
Christopher P. McKay ◽  
Victor Lagun

AbstractIn November 2008 an automated meteorological station was established at Lake Untersee in East Antarctica, producing a 5-yr data record of meteorological conditions at the lake. This dataset includes five austral summer seasons composed of December, January, and February (DJF). The average solar flux at Lake Untersee for the four years with complete solar flux data is 99.2 ± 0.6 W m−2. The mean annual temperature at Lake Untersee was determined to be −10.6° ± 0.6°C. The annual degree-days above freezing for the five years were 9.7, 37.7, 22.4, 7.0, and 48.8, respectively, with summer (DJF) accounting for virtually all of this. For these five summers the average DJF temperatures were −3.5°, −1.9°, −2.2°, −2.6°, and −2.5°C. The maximum (minimum) temperatures were +5.3°, +7.6°, +5.7°, +4.4°, and +9.0°C (−13.8°, −12.8°, −12.9°, −13.5°, and −12.1°C). The average of the wind speed recorded was 5.4 m s−1, the maximum was 35.7 m s−1, and the average daily maximum was 15 m s−1. The wind speed was higher in the winter, averaging 6.4 m s−1. Summer winds averaged 4.7 m s−1. The dominant wind direction for strong winds is from the south for all seasons, with a secondary source of strong winds in the summer from the east-northeast. Relative humidity averages 37%; however, high values will occur with an average period of ~10 days, providing a strong indicator of the quasi-periodic passage of storms across the site. Low summer temperatures and high wind speeds create conditions at the surface of the lake ice resulting in sublimation rather than melting as the main mass-loss process.


2016 ◽  
Vol 12 (S323) ◽  
pp. 284-287
Author(s):  
S. Aniyan ◽  
K. C. Freeman ◽  
M. Arnaboldi ◽  
O. Gerhard ◽  
L. Coccato ◽  
...  

AbstractThe decomposition of the 21 cm rotation curve of galaxies into contribution from the disk and dark halo depends on the adopted mass to light ratio (M/L) of the disk. Given the vertical velocity dispersion (σz) of stars in the disk and its scale height (hz), the disk surface density and hence the M/L can be estimated. Earlier works have used this technique to conclude that galaxy disks are submaximal. Here we address an important conceptual problem: star-forming spirals have an old (kinematically hot) disk population and a young cold disk population. Both of these populations contribute to the integrated light spectra from which σz is measured. The measured scale height hz is for the old disk population. In the Jeans equation, σz and hz must pertain to the same population. We have developed techniques to extract the velocity dispersion of the old disk from integrated light spectra and from samples of planetary nebulae. We present the analysis of the disk kinematics of the galaxy NGC 628 using IFU data in the inner regions and planetary nebulae as tracers in the outer regions of the disk. We demonstrate that using the scale height of the old thin disk with the vertical velocity dispersion of the same population, traced by PNe, results in a maximal disk for NGC 628. Our analysis concludes that previous studies underestimate the disk surface mass density by ~ 2, sufficient to make a maximal disk for NGC 628 appear like a submaximal disk.


Sign in / Sign up

Export Citation Format

Share Document