scholarly journals Global glacier volume projections under high-end climate change scenarios

2019 ◽  
Vol 13 (1) ◽  
pp. 325-350 ◽  
Author(s):  
Sarah Shannon ◽  
Robin Smith ◽  
Andy Wiltshire ◽  
Tony Payne ◽  
Matthias Huss ◽  
...  

Abstract. The Paris agreement aims to hold global warming to well below 2 ∘C and to pursue efforts to limit it to 1.5 ∘C relative to the pre-industrial period. Recent estimates based on population growth and intended carbon emissions from participant countries suggest global warming may exceed this ambitious target. Here we present glacier volume projections for the end of this century, under a range of high-end climate change scenarios, defined as exceeding +2 ∘C global average warming relative to the pre-industrial period. Glacier volume is modelled by developing an elevation-dependent mass balance model for the Joint UK Land Environment Simulator (JULES). To do this, we modify JULES to include glaciated and unglaciated surfaces that can exist at multiple heights within a single grid box. Present-day mass balance is calibrated by tuning albedo, wind speed, precipitation, and temperature lapse rates to obtain the best agreement with observed mass balance profiles. JULES is forced with an ensemble of six Coupled Model Intercomparison Project Phase 5 (CMIP5) models, which were downscaled using the high-resolution HadGEM3-A atmosphere-only global climate model. The CMIP5 models use the RCP8.5 climate change scenario and were selected on the criteria of passing 2 ∘C global average warming during this century. The ensemble mean volume loss at the end of the century plus or minus 1 standard deviation is -64±5 % for all glaciers excluding those on the peripheral of the Antarctic ice sheet. The uncertainty in the multi-model mean is rather small and caused by the sensitivity of HadGEM3-A to the boundary conditions supplied by the CMIP5 models. The regions which lose more than 75 % of their initial volume by the end of the century are Alaska, western Canada and the US, Iceland, Scandinavia, the Russian Arctic, central Europe, Caucasus, high-mountain Asia, low latitudes, southern Andes, and New Zealand. The ensemble mean ice loss expressed in sea level equivalent contribution is 215.2±21.3 mm. The largest contributors to sea level rise are Alaska (44.6±1.1 mm), Arctic Canada north and south (34.9±3.0 mm), the Russian Arctic (33.3±4.8 mm), Greenland (20.1±4.4), high-mountain Asia (combined central Asia, South Asia east and west), (18.0±0.8 mm), southern Andes (14.4±0.1 mm), and Svalbard (17.0±4.6 mm). Including parametric uncertainty in the calibrated mass balance parameters gives an upper bound global volume loss of 281.1 mm of sea level equivalent by the end of the century. Such large ice losses will have inevitable consequences for sea level rise and for water supply in glacier-fed river systems.

2018 ◽  
Author(s):  
Sarah Shannon ◽  
Robin Smith ◽  
Andy Wiltshire ◽  
Tony Payne ◽  
Matthias Huss ◽  
...  

Abstract. The Paris agreement aims to hold global warming to well below 2 °C and to pursue efforts to limit it to 1.5 °C relative to the pre-industrial period. Recent estimates based on population growth and intended carbon emissions from participant countries, suggest global warming may exceed this ambitious target. Here we present glacier volume projections for the end of this century, under a range of high-end climate change scenarios, defined as exceeding +2 °C global average warming relative to the preindustrial period. Glacier volume is modelled by developing an elevation-dependent mass balance model for the Joint UK Land Environmental Simulator (JULES). To do this, we modify JULES to include glaciated and un-glaciated surfaces that can exist at multiple heights within a single grid-box. Present day mass balance is calibrated by tuning albedo, wind speed, precipitation and temperature lapse rates to obtain the best agreement with observed mass balance profiles. JULES is forced with an ensemble of six Coupled Model Intercomparison Project Phase 5 (CMIP5) models which were downscaled using the high resolution HadGEM3-A atmosphere only global climate model. The ensemble mean volume loss at the end of the century plus/minus one standard deviation is, minus;64 ± 5 % for all glaciers excluding those on the peripheral of the Antarctic ice sheet. The uncertainty in the multi-model mean is rather small and caused by the sensitivity of HadGEM3-A to the boundary conditions supplied by the CMIP5 models. The regions which lose more than 75% of their initial volume by the end of the century are; Alaska, Western Canada and US, Iceland, Scandinavia, Russian Arctic, Central Europe, Caucasus, High Mountain Asia, Low Latitudes, Southern Andes and New Zealand. The ensemble mean ice loss expressed in sea-level equivalent contribution is 215.2 ± 21.3 mm. The largest contributors to sea level rise are Alaska (44.6 ± 1.1 mm), Arctic Canada North and South (34.9 ± 3.0 mm), Russian Arctic (33.3 ± 4.8 mm), Greenland (20.1 ± 4.4), High Mountain Asia (combined Central Asia, South Asia East and West), (18.0 ± 0.8 mm), Southern Andes (14.4 ± 0.1 mm) and Svalbard (17.0 ± 4.6 mm). Including parametric uncertainty in the calibrated mass balance parameters, gives an upper bound global volume loss of 247.3 mm, sea-level equivalent by the end of the century. Such large ice losses will have inevitable consequences for sea-level rise and for water supply in glacier-fed river systems.


Author(s):  
Julien Ruffault ◽  
Thomas Curt ◽  
Nicolas K. Martin St-Paul ◽  
Vincent Moron ◽  
Ricardo M. Trigo

Abstract. Increasing drought conditions under global warming are expected to alter the frequency and distribution of large, high intensity wildfires. Yet, little is known regarding how it will affect fire weather and translate into wildfire behaviour. Here, we analysed the climatology of extreme wildfires that occurred during the exceptionally dry summers of 2003 and 2016 in Mediterranean France. We identified two distinct shifts in fire climatology towards fire weather spaces that had not been explored before, and which result from specific interactions between the types of drought and the types of fire. In 2016, a long-lasting press drought intensified wind-driven fires. In 2003, a hot drought combining a heatwave with a press drought intensified heat-driven fires. Our findings highlight that increasing drought conditions projected by climate change scenarios might affect the dryness of fuel compartments and create several new generations of wildfire overwhelming fire suppression capacities.


2013 ◽  
Vol 7 (4) ◽  
pp. 1227-1245 ◽  
Author(s):  
M. Zemp ◽  
E. Thibert ◽  
M. Huss ◽  
D. Stumm ◽  
C. Rolstad Denby ◽  
...  

Abstract. Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until recently, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without consideration of errors. In this study, we propose a framework for reanalysing glacier mass balance series that includes conceptual and statistical toolsets for assessment of random and systematic errors, as well as for validation and calibration (if necessary) of the glaciological with the geodetic balance results. We demonstrate the usefulness and limitations of the proposed scheme, drawing on an analysis that comprises over 50 recording periods for a dozen glaciers, and we make recommendations to investigators and users of glacier mass balance data. Reanalysing glacier mass balance series needs to become a standard procedure for every monitoring programme to improve data quality, including reliable uncertainty estimates.


2015 ◽  
Vol 28 (18) ◽  
pp. 7327-7346 ◽  
Author(s):  
Xiuquan Wang ◽  
Guohe Huang ◽  
Jinliang Liu ◽  
Zhong Li ◽  
Shan Zhao

Abstract In this study, high-resolution climate projections over Ontario, Canada, are developed through an ensemble modeling approach to provide reliable and ready-to-use climate scenarios for assessing plausible effects of future climatic changes at local scales. The Providing Regional Climates for Impacts Studies (PRECIS) regional modeling system is adopted to conduct ensemble simulations in a continuous run from 1950 to 2099, driven by the boundary conditions from a HadCM3-based perturbed physics ensemble. Simulations of temperature and precipitation for the baseline period are first compared to the observed values to validate the performance of the ensemble in capturing the current climatology over Ontario. Future projections for the 2030s, 2050s, and 2080s are then analyzed to help understand plausible changes in its local climate in response to global warming. The analysis indicates that there is likely to be an obvious warming trend with time over the entire province. The increase in average temperature is likely to be varying within [2.6, 2.7]°C in the 2030s, [4.0, 4.7]°C in the 2050s, and [5.9, 7.4]°C in the 2080s. Likewise, the annual total precipitation is projected to increase by [4.5, 7.1]% in the 2030s, [4.6, 10.2]% in the 2050s, and [3.2, 17.5]% in the 2080s. Furthermore, projections of rainfall intensity–duration–frequency (IDF) curves are developed to help understand the effects of global warming on extreme precipitation events. The results suggest that there is likely to be an overall increase in the intensity of rainfall storms. Finally, a data portal named Ontario Climate Change Data Portal (CCDP) is developed to ensure decision-makers and impact researchers have easy and intuitive access to the refined regional climate change scenarios.


2020 ◽  
Vol 11 (4) ◽  
pp. 995-1012
Author(s):  
Lukas Brunner ◽  
Angeline G. Pendergrass ◽  
Flavio Lehner ◽  
Anna L. Merrifield ◽  
Ruth Lorenz ◽  
...  

Abstract. The sixth Coupled Model Intercomparison Project (CMIP6) constitutes the latest update on expected future climate change based on a new generation of climate models. To extract reliable estimates of future warming and related uncertainties from these models, the spread in their projections is often translated into probabilistic estimates such as the mean and likely range. Here, we use a model weighting approach, which accounts for the models' historical performance based on several diagnostics as well as model interdependence within the CMIP6 ensemble, to calculate constrained distributions of global mean temperature change. We investigate the skill of our approach in a perfect model test, where we use previous-generation CMIP5 models as pseudo-observations in the historical period. The performance of the distribution weighted in the abovementioned manner with respect to matching the pseudo-observations in the future is then evaluated, and we find a mean increase in skill of about 17 % compared with the unweighted distribution. In addition, we show that our independence metric correctly clusters models known to be similar based on a CMIP6 “family tree”, which enables the application of a weighting based on the degree of inter-model dependence. We then apply the weighting approach, based on two observational estimates (the fifth generation of the European Centre for Medium-Range Weather Forecasts Retrospective Analysis – ERA5, and the Modern-Era Retrospective analysis for Research and Applications, version 2 – MERRA-2), to constrain CMIP6 projections under weak (SSP1-2.6) and strong (SSP5-8.5) climate change scenarios (SSP refers to the Shared Socioeconomic Pathways). Our results show a reduction in the projected mean warming for both scenarios because some CMIP6 models with high future warming receive systematically lower performance weights. The mean of end-of-century warming (2081–2100 relative to 1995–2014) for SSP5-8.5 with weighting is 3.7 ∘C, compared with 4.1 ∘C without weighting; the likely (66%) uncertainty range is 3.1 to 4.6 ∘C, which equates to a 13 % decrease in spread. For SSP1-2.6, the weighted end-of-century warming is 1 ∘C (0.7 to 1.4 ∘C), which results in a reduction of −0.1 ∘C in the mean and −24 % in the likely range compared with the unweighted case.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Ayse Gul Sarikaya ◽  
◽  
Omer K. Orucu ◽  

Arbutus andrachne L., the strawberry tree, is an evergreen shrub or small tree in the Turkish flora and has broad uses. The wood is used for decorative purposes, packaging, and manufacturing furniture. The fruits are edible and used in treating many kinds of diseases. However, global warming might affect the abundance of this symbolic plant's distribution, especially at higher latitudes. This study was conducted to determine the expected effects of climate change on A. andrachne. For this purpose, Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 were used to expect climate change scenarios for 2050 and 2070, and potential distribution areas of A. andrachne were presented. The results indicated that the distribution of A. andrachne would decrease in the southern regions of Turkey. However, the spread of the species could be expanded in the western and northern areas. It is also expected that there would be potential habitat losses, which would affect the distribution of A. andrachne.


Author(s):  
Mark Maslin

‘Evidence for climate change’ considers both past and recent climate change through changes in temperature, precipitation, and relative global sea level to show that significant changes in climate have been recorded. These include a 0.85°Celsius (C) increase in average global temperatures over the last 150 years, sea-level rise of over 20 cm, significant shifts in the seasonality and intensities of precipitation, changing weather patterns, and significant retreat of Arctic sea ice and nearly all continental glaciers. The IPCC 2013 report states that the evidence for global warming is unequivocal and that there is very high confidence that this warming is due to human emissions of greenhouse gases.


1995 ◽  
Vol 21 ◽  
pp. 231-239 ◽  
Author(s):  
Bernhard Rabus ◽  
Keith Echelmeyer ◽  
Dennis Trabant ◽  
Carl Benson

Detailed surveys of McCall Glacier in the Alaskan Arctic reveal changes from 1972 to 1993. The ice surface dropped everywhere, by amounts ranging from about 3 m in the highest cirques tq more than 42 m near the present terminus. The total volume loss was 3.5+ 0.2 x 10' m(, resulting in an average mass balance of 0.33 + 0.01 in a . l he terminus has retreated by about 285 m at a rale of 12_.5 ma \ Results from photogrammetry for an earlier period, 1958-71, were I.16x 10'm3 and 0.13 ma for volume change and mass balance, respectively; the mean terminus retreat rate was then 5.7 m a . The changes have to be seen in the context of McCall Glacier’s low mass-exchange rate; annual accumulation and ablation, averaged over the years 1969 72 were only +0.16 and 0.3 m a '. Cross-profiles in the ablation area, surveyed at intervals of a few years, show an increased drop rate since the late 1970s. 7 he volume-ehange data suggest a climate warming in the early 1970s. Enhanced thinning of the lower ablation region and accelerated terminus retreat seem to lag this climate change by not more than 10 years, This indicates a reaction time of McCall Glacier that is considerably shorter than its theoretic response time of about 50 70 years.


Author(s):  
José Guilherme Moreira Simões Vieira ◽  
Joana Salgueiro ◽  
Amadeu Mortágua Velho da Maia Soares ◽  
Ulisses Azeiteiro ◽  
Fernando Morgado

PurposeThe development of models that allows the evaluation and prediction of erosion processes is an important tool for the management and planning of coastal systems. Mangrove forests systems are under threat by the impacts of erosion, which is also intensified by human activity (and aggravated in the scenarios of global warming and climate change). The purpose of this paper is to develop a model of geographic information systems (GIS) that can be used for any estuary area, but it can also be used for mangroves.Design/methodology/approachThis paper uses georeferentiation which is defined as a set of parameters that best characterize the mangrove areas: elevation (m); geomorphology; geology; land cover; anthropogenic activities; distance to the coastline (m) and maximum tidal range (m). Three different methods are used to combine the various vulnerability parameters, namely, DRASTIC index, analytical hierarchy process (AHP) and square root of the geometric mean.FindingsThe three approaches presented in this work show different types evaluating vulnerability to erosion, highlighting a stronger overvaluation of the areas presented with a high vulnerability, through the use of DRASTIC index when compared with two other approaches. The use of the AHP shows similarity to the square root of the geometric mean model, but the AHP also presents a higher percentage of vulnerable areas classified as having medium to very high vulnerability. On the other hand, the use of square root of the geometric mean led to a higher percentage of areas classified as having low and very low vulnerability.Research limitations/implicationsThese three qualitative models, based on a cognitive approach, using the set of parameters defined in this research, are a good tool for the spatial distribution of erosion in different mangroves in the world.Originality/valueGlobal warming and climate change scenarios require adaptation and mitigation options supported by science-based strategies and solutions.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 13 ◽  
Author(s):  
Abdolazim Ghanghermeh ◽  
Gholamreza Roshan ◽  
José Orosa ◽  
Ángel Costa

Urban microclimate patterns can play a great role for the allocation and management of cooling and heating energy sources, urban design and architecture, and urban heat island control. Therefore, the present study intends to investigate the variability of spatial and temporal entropy of the Effective Temperature index (ET) for the two basic periods (1971–2010) and the future (2011–2050) in Tehran to determine how the variability degree of the entropy values of the abovementioned bioclimatic would be, based on global warming and future climate change. ArcGIS software and geostatistical methods were used to show the Spatial and Temporal variations of the microclimate pattern in Tehran. However, due to global warming the temperature difference between the different areas of the study has declined, which is believed to reduce the abnormalities and more orderly between the data spatially and over time. It is observed that the lowest values of the Shannon entropy occurred in the last two decades, from 2030 to 2040, and the other in 2040–2050. Because, based on global warming, dominant areas have increased temperature, and the difference in temperature is reduced daily and the temperature difference between the zones of different areas is lower. The results of this study show a decrease in the coefficient of the Shannon entropy of effective temperature for future decades in Tehran. This can be due to the reduction of temperature differences between different regions. However, based on the urban-climate perspective, there is no positive view of this process. Because reducing the urban temperature difference means reducing the local pressure difference as well as reducing local winds. This is a factor that can effective, though limited, in the movement of stagnant urban air and reduction of thermal budget and thermal stress of the city.


Sign in / Sign up

Export Citation Format

Share Document