scholarly journals An enhancement to sea ice motion and age products

Author(s):  
Mark A. Tschudi ◽  
Walter N. Meier ◽  
J. Scott Stewart

Abstract. A new version of the sea ice motion and age products distributed at the National Snow and Ice Data Center's NASA Snow and Ice Distributed Active Archive Center has been developed. The new version, 4.0, includes several significant upgrades in processing, corrects known issues with the previous version, and updates the time series through 2018, with regular updates planned for the future. Here, we provide a history of the product development, discuss the improvements to the algorithms that create these products, and compare the Version 4 products to the previous version. While Version 4 algorithm changes were significant, the impact on the products is relatively minor, particularly for more recent years. Trends in motion and age are not substantially different between the versions. Changes in sea ice motion and age derived from the product show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice, to a sea ice cover dominated by first-year ice, which is more susceptible to summer melt. We also observe an increase in the speed of the ice in recent years, which is anticipated with the annual decrease in sea ice extent.

2020 ◽  
Vol 14 (5) ◽  
pp. 1519-1536 ◽  
Author(s):  
Mark A. Tschudi ◽  
Walter N. Meier ◽  
J. Scott Stewart

Abstract. A new version of sea ice motion and age products includes several significant upgrades in processing, corrects known issues with the previous version, and updates the time series through 2018, with regular updates planned for the future. First, we provide a history of these NASA products distributed at the National Snow and Ice Data Center. Then we discuss the improvements to the algorithms, provide validation results for the new (Version 4) and older versions, and intercompare the two. While Version 4 algorithm changes were significant, the impact on the products is relatively minor, particularly for more recent years. The changes in Version 4 reduce motion biases by ∼ 0.01 to 0.02 cm s−1 and error standard deviations by ∼ 0.3 cm s−1. Overall, ice speed increased in Version 4 over Version 3 by 0.5 to 2.0 cm s−1 over most of the time series. Version 4 shows a higher positive trend for the Arctic of 0.21 cm s−1 per decade compared to 0.13 cm s−1 per decade for Version 3. The new version of ice age estimates indicates more older ice than Version 3, especially earlier in the record, but similar trends toward less multiyear ice. Changes in sea ice motion and age derived from the product show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice to a sea ice cover dominated by first-year ice, which is more susceptible to summer melt. We also observe an increase in the speed of the ice over the time series ≥ 30 years, which has been shown in other studies and is anticipated with the annual decrease in sea ice extent.


2020 ◽  
Author(s):  
Guillaume Boutin ◽  
Timothy Williams ◽  
Pierre Rampal ◽  
Einar Olason ◽  
Camille Lique

<p>The decrease in Arctic sea ice extent is associated with an increase of the area where sea ice and open ocean interact, commonly referred to as the Marginal Ice Zone (MIZ). In this area, sea ice is particularly exposed to waves that can penetrate over tens to hundreds of kilometres into the ice cover. Waves are known to play a major role in the fragmentation of sea ice in the MIZ, and the interactions between wave-induced sea ice fragmentation and lateral melting have received particular attention in recent years. The impact of this fragmentation on sea ice dynamics, however, remains mostly unknown, although it is thought that fragmented sea ice experiences less resistance to deformation than pack ice. In this presentation, we will introduce a new coupled framework involving the spectral wave model WAVEWATCH III and the sea ice model neXtSIM, which includes a Maxwell-Elasto Brittle rheology. We use this coupled modelling system to investigate the potential impact of wave-induced sea ice fragmentation on sea ice dynamics. Focusing on the Barents Sea, we find that the decrease of the internal stress of sea ice resulting from its fragmentation by waves results in a more dynamical MIZ, in particular in areas where sea ice is compact. Sea ice drift is enhanced for both on-ice and off-ice wind conditions. Our results stress the importance of considering wave–sea-ice interactions for forecast applications. They also suggest that waves likely modulate the area of sea ice that is advected away from the pack by ocean (sub-)mesoscale eddies near the ice edge, potentially contributing to the observed past, current and future sea ice cover decline in the Arctic. </p>


2020 ◽  
Author(s):  
Guillaume Boutin ◽  
Timothy Williams ◽  
Pierre Rampal ◽  
Einar Olason ◽  
Camille Lique

Abstract. The decrease in Arctic sea ice extent is associated with an increase of the area where sea ice and open ocean interact, commonly referred to as the Marginal Ice Zone (MIZ). In this area, sea ice is particularly exposed to waves that can penetrate over tens to hundreds of kilometres into the ice cover. Waves are known to play a major role in the fragmentation of sea ice in the MIZ, and the interactions between wave-induced sea ice fragmentation and lateral melting have received particular attention in recent years. The impact of this fragmentation on sea ice dynamics, however, remains mostly unknown, although it is thought that fragmented sea ice experiences less resistance to deformation than pack ice. Here, we introduce a new coupled framework involving the spectral wave model WAVEWATCH III and the sea ice model neXtSIM, which includes a Maxwell-Elasto Brittle rheology. We use this coupled modelling system to investigate the potential impact of wave-induced sea ice fragmentation on sea ice dynamics. Focusing on the Barents Sea, we find that the decrease of the internal stress of sea ice resulting from its fragmentation by waves results in a more dynamical MIZ, in particular in areas where sea ice is compact. Sea ice drift is enhanced for both on-ice and off-ice wind conditions. Our results stress the importance of considering wave–sea-ice interactions for forecast applications. They also suggest that waves likely modulate the area of sea ice that is advected away from the pack by ocean (sub-)mesoscale eddies near the ice edge, potentially contributing to the observed past, current and future sea ice cover decline in the Arctic.


2021 ◽  
Vol 15 (1) ◽  
pp. 431-457
Author(s):  
Guillaume Boutin ◽  
Timothy Williams ◽  
Pierre Rampal ◽  
Einar Olason ◽  
Camille Lique

Abstract. As sea ice extent decreases in the Arctic, surface ocean waves have more time and space to develop and grow, exposing the marginal ice zone (MIZ) to more frequent and more energetic wave events. Waves can fragment the ice cover over tens of kilometres, and the prospect of increasing wave activity has sparked recent interest in the interactions between wave-induced sea ice fragmentation and lateral melting. The impact of this fragmentation on sea ice dynamics, however, remains mostly unknown, although it is thought that fragmented sea ice experiences less resistance to deformation than pack ice. Here, we introduce a new coupled framework involving the spectral wave model WAVEWATCH III and the sea ice model neXtSIM, which includes a Maxwell elasto-brittle rheology. This rheological framework enables the model to efficiently track and keep a “memory” of the level of sea ice damage. We propose that the level of sea ice damage increases when wave-induced fragmentation occurs. We used this coupled modelling system to investigate the potential impact of such a local mechanism on sea ice kinematics. Focusing on the Barents Sea, we found that the internal stress decrease of sea ice resulting from its fragmentation by waves resulted in a more dynamical MIZ, particularly in areas where sea ice is compact. Sea ice drift is enhanced for both on-ice and off-ice wind conditions. Our results stress the importance of considering wave–sea-ice interactions for forecast applications. They also suggest that waves likely modulate the area of sea ice that is advected away from the pack by the ocean, potentially contributing to the observed past, current and future sea ice cover decline in the Arctic.


2014 ◽  
Vol 8 (1) ◽  
pp. 229-243 ◽  
Author(s):  
D. Notz

Abstract. We examine how the evaluation of modelled sea-ice coverage against reality is affected by uncertainties in the retrieval of sea-ice coverage from satellite, by the usage of sea-ice extent to overcome these uncertainties, and by internal variability. We find that for Arctic summer sea ice, model biases in sea-ice extent can be qualitatively different from biases in sea-ice area. This is because about half of the CMIP5 models and satellite retrievals based on the Bootstrap and the ASI algorithm show a compact ice cover in summer with large areas of high-concentration sea ice, while the other half of the CMIP5 models and satellite retrievals based on the NASA Team algorithm show a loose ice cover. For the Arctic winter sea-ice cover, differences in grid geometry can cause synthetic biases in sea-ice extent that are larger than the observational uncertainty. Comparing the uncertainty arising directly from the satellite retrievals with those that arise from internal variability, we find that the latter by far dominates the uncertainty estimate for trends in sea-ice extent and area: most of the differences between modelled and observed trends can simply be explained by internal variability. For absolute sea-ice area and sea-ice extent, however, internal variability cannot explain the difference between model and observations for about half the CMIP5 models that we analyse here. All models that we examined have regional biases, as expressed by the root-mean-square error in concentration, that are larger than the differences between individual satellite algorithms.


2002 ◽  
Vol 34 ◽  
pp. 420-428 ◽  
Author(s):  
Josefino C. Comiso

AbstractCo-registered and continuous satellite data of sea-ice concentrations and surface ice temperatures from 1981 to 2000 are analyzed to evaluate relationships between these two critical climate parameters and what they reveal in tandem about the changing Arctic environment. During the 19 year period, the Arctic ice extent and actual ice area are shown to be declining at a rate of –2.0±0.3% dec –1 and 3.1 ±0.4% dec–1, respectively, while the surface ice temperature has been increasing at 0.4 ±0.2 K dec–1, where dec is decade. The extent and area of the perennial ice cover, estimated from summer minimum values, have been declining at a much faster rate of –6.7±2.4% dec–1 and –8.3±2.4% dec–1, respectively, while the surface ice temperature has been increasing at 0.9 ±0.6K dec–1. This unusual rate of decline is accompanied by a very variable summer ice cover in the 1990s compared to the 1980s, suggesting increases in the fraction of the relatively thin second-year, and hence a thinning in the perennial, ice cover during the last two decades. Yearly anomaly maps show that the ice-concentration anomalies are predominantly positive in the 1980s and negative in the 1990s, while surface temperature anomalies were mainly negative in the 1980s and positive in the 1990s. The yearly ice-concentration and surface temperature anomalies are highly correlated, indicating a strong link especially in the seasonal region and around the periphery of the perennial ice cover. The surface temperature anomalies also reveal the spatial scope of each warming (or cooling) phenomenon that usually extends beyond the boundaries of the sea-ice cover.


2012 ◽  
Vol 25 (5) ◽  
pp. 1431-1452 ◽  
Author(s):  
Alexandra Jahn ◽  
Kara Sterling ◽  
Marika M. Holland ◽  
Jennifer E. Kay ◽  
James A. Maslanik ◽  
...  

To establish how well the new Community Climate System Model, version 4 (CCSM4) simulates the properties of the Arctic sea ice and ocean, results from six CCSM4 twentieth-century ensemble simulations are compared here with the available data. It is found that the CCSM4 simulations capture most of the important climatological features of the Arctic sea ice and ocean state well, among them the sea ice thickness distribution, fraction of multiyear sea ice, and sea ice edge. The strongest bias exists in the simulated spring-to-fall sea ice motion field, the location of the Beaufort Gyre, and the temperature of the deep Arctic Ocean (below 250 m), which are caused by deficiencies in the simulation of the Arctic sea level pressure field and the lack of deep-water formation on the Arctic shelves. The observed decrease in the sea ice extent and the multiyear ice cover is well captured by the CCSM4. It is important to note, however, that the temporal evolution of the simulated Arctic sea ice cover over the satellite era is strongly influenced by internal variability. For example, while one ensemble member shows an even larger decrease in the sea ice extent over 1981–2005 than that observed, two ensemble members show no statistically significant trend over the same period. It is therefore important to compare the observed sea ice extent trend not just with the ensemble mean or a multimodel ensemble mean, but also with individual ensemble members, because of the strong imprint of internal variability on these relatively short trends.


2016 ◽  
Vol 29 (2) ◽  
pp. 889-902 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Ivana Cvijanovic ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract Reduction of the Arctic sea ice cover can affect the atmospheric circulation and thus impact the climate beyond the Arctic. The atmospheric response may, however, vary with the geographical location of sea ice loss. The atmospheric sensitivity to the location of sea ice loss is studied using a general circulation model in a configuration that allows combination of a prescribed sea ice cover and an active mixed layer ocean. This hybrid setup makes it possible to simulate the isolated impact of sea ice loss and provides a more complete response compared to experiments with fixed sea surface temperatures. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming, which peaks over the area of ice loss. The maximum warming is found during winter, delayed compared to the maximum sea ice reduction. The wintertime response of the midlatitude atmospheric circulation shows a nonuniform sensitivity to the location of sea ice reduction. While all three scenarios exhibit decreased zonal winds related to high-latitude geopotential height increases, the magnitudes and locations of the anomalies vary between the simulations. Investigation of the North Atlantic Oscillation reveals a high sensitivity to the location of the ice loss. The northern center of action exhibits clear shifts in response to the different sea ice reductions. Sea ice loss in the Atlantic and Pacific sectors of the Arctic cause westward and eastward shifts, respectively.


2006 ◽  
Vol 52 (178) ◽  
pp. 433-439 ◽  
Author(s):  
Larissa Nazarenko ◽  
Nickolai Tausnev ◽  
James Hansen

AbstractUsing a global climate model coupled with an ocean and a sea-ice model, we compare the effects of doubling CO2 and halving CO2 on sea-ice cover and connections with the atmosphere and ocean. An overall warming in the 2 × CO2 experiment causes reduction of sea-ice extent by 15%, with maximum decrease in summer and autumn, consistent with observed seasonal sea-ice changes. The intensification of the Northern Hemisphere circulation is reflected in the positive phase of the Arctic Oscillation (AO), associated with higher-than-normal surface pressure south of about 50° N and lower-than-normal surface pressure over the high northern latitudes. Strengthening the polar cell causes enhancement of westerlies around the Arctic perimeter during winter. Cooling, in the 0.5 × CO2 experiment, leads to thicker and more extensive sea ice. In the Southern Hemisphere, the increase in ice-covered area (28%) dominates the ice-thickness increase (5%) due to open ocean to the north. In the Northern Hemisphere, sea-ice cover increases by only 8% due to the enclosed land/sea configuration, but sea ice becomes much thicker (108%). Substantial weakening of the polar cell due to increase in sea-level pressure over polar latitudes leads to a negative trend of the winter AO index. The model reproduces large year-to-year variability under both cooling and warming conditions.


2001 ◽  
Vol 33 ◽  
pp. 457-473 ◽  
Author(s):  
Josefino C. Comiso

AbstractRecent observations of a decreasing ice extent and a possible thinning of the ice cover in the Arctic make it imperative that detailed studies of the current Arctic environment are made, especially since the region is known to be highly sensitive to a potential change in climate. A continuous dataset of microwave, thermal infrared and visible satellite data has been analyzed for the first time to concurrently study in spatial detail the variability of the sea-ice cover, surface temperature, albedo and cloud statistics in the region from 1987 to 1998. Large warming anomalies during the last four years (i.e. 1995−98) are indeed apparent and spatially more extensive than previous years. The largest surface temperature anomaly occurred in 1998, but this was confined mainly to the western Arctic and the North American continent, while cooling occurred in other areas. The albedo anomalies show good coherence with the sea-ice concentration anomalies except in the central region, where periodic changes in albedo are observed, indicative of interannual changes in duration and areal extent of melt ponding and snow-free ice cover. The cloud-cover anomalies are more difficult to interpret, but are shown to be well correlated with the expected warming effects of clouds on the sea-ice surface. The results from trend analyses of the data are consistent with a general warming trend and an ice-cover retreat that appear to be even larger during the last dozen years than those previously reported.


Sign in / Sign up

Export Citation Format

Share Document