scholarly journals An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)

2020 ◽  
Vol 14 (5) ◽  
pp. 1519-1536 ◽  
Author(s):  
Mark A. Tschudi ◽  
Walter N. Meier ◽  
J. Scott Stewart

Abstract. A new version of sea ice motion and age products includes several significant upgrades in processing, corrects known issues with the previous version, and updates the time series through 2018, with regular updates planned for the future. First, we provide a history of these NASA products distributed at the National Snow and Ice Data Center. Then we discuss the improvements to the algorithms, provide validation results for the new (Version 4) and older versions, and intercompare the two. While Version 4 algorithm changes were significant, the impact on the products is relatively minor, particularly for more recent years. The changes in Version 4 reduce motion biases by ∼ 0.01 to 0.02 cm s−1 and error standard deviations by ∼ 0.3 cm s−1. Overall, ice speed increased in Version 4 over Version 3 by 0.5 to 2.0 cm s−1 over most of the time series. Version 4 shows a higher positive trend for the Arctic of 0.21 cm s−1 per decade compared to 0.13 cm s−1 per decade for Version 3. The new version of ice age estimates indicates more older ice than Version 3, especially earlier in the record, but similar trends toward less multiyear ice. Changes in sea ice motion and age derived from the product show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice to a sea ice cover dominated by first-year ice, which is more susceptible to summer melt. We also observe an increase in the speed of the ice over the time series ≥ 30 years, which has been shown in other studies and is anticipated with the annual decrease in sea ice extent.

2019 ◽  
Author(s):  
Mark A. Tschudi ◽  
Walter N. Meier ◽  
J. Scott Stewart

Abstract. A new version of the sea ice motion and age products distributed at the National Snow and Ice Data Center's NASA Snow and Ice Distributed Active Archive Center has been developed. The new version, 4.0, includes several significant upgrades in processing, corrects known issues with the previous version, and updates the time series through 2018, with regular updates planned for the future. Here, we provide a history of the product development, discuss the improvements to the algorithms that create these products, and compare the Version 4 products to the previous version. While Version 4 algorithm changes were significant, the impact on the products is relatively minor, particularly for more recent years. Trends in motion and age are not substantially different between the versions. Changes in sea ice motion and age derived from the product show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice, to a sea ice cover dominated by first-year ice, which is more susceptible to summer melt. We also observe an increase in the speed of the ice in recent years, which is anticipated with the annual decrease in sea ice extent.


2020 ◽  
Author(s):  
Ilias Bougoudis ◽  
Anne-Marlene Blechschmidt ◽  
Andreas Richter ◽  
Sora Seo ◽  
John Philip Burrows ◽  
...  

Abstract. Arctic Amplification describes the rapid increase of the air temperature in the past three decades in the Arctic, which impacts on physicochemical conditions, the ecosystem and biogeochemistry. Every polar spring, the BrO explosion, a series of chemical reactions that release bromine molecules to the troposphere occurs over sea ice covered regions. This autocatalytic mechanism depletes boundary layer and tropospheric ozone, thereby changes the oxidizing capacity of the atmosphere and facilitates the deposition of metals (e.g. Hg). In this study, we present a 22 year consolidated and consistent tropospheric BrO dataset, derived from four different UV-VIS satellite instruments and investigate the BrO evolution under the impact of Arctic Amplification. The retrieval data products from the different sensors are compared during periods of overlap and show good agreement. By studying the sensor merged time-series of tropospheric BrO vertical column densities, we find an increase in the magnitude of BrO explosion events under the impact of Arctic Amplification with an upward trend of about 1.5 % per year. Furthermore, the areas where BrO plumes frequently appear have changed, extending over larger regions in the Arctic during more recent years. Comparison to sea ice age data suggests that the reported changes in tropospheric BrO are linked in a complex way to the increase of first-year ice extent in the Arctic.


2012 ◽  
Vol 6 (2) ◽  
pp. 931-956 ◽  
Author(s):  
C. L. Parkinson ◽  
D. J. Cavalieri

Abstract. In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Ron Kwok ◽  
Shirley S. Pang ◽  
Sahra Kacimi

Understanding long-term changes in large-scale sea ice drift in the Southern Ocean is of considerable interest given its contribution to ice extent, to ice production in open waters, with associated dense water formation and heat flux to the atmosphere, and thus to the climate system. In this paper, we examine the trends and variability of this ice drift in a 34-year record (1982–2015) derived from satellite observations. Uncertainties in drift (~3 to 4 km day–1) were assessed with higher resolution observations. In a linear model, drift speeds were ~1.4% of the geostrophic wind from reanalyzed sea-level pressure, nearly 50% higher than that of the Arctic. This result suggests an ice cover in the Southern Ocean that is thinner, weaker, and less compact. Geostrophic winds explained all but ~40% of the variance in ice drift. Three spatially distinct drift patterns were shown to be controlled by the location and depth of atmospheric lows centered over the Amundsen, Riiser-Larsen, and Davis seas. Positively correlated changes in sea-level pressures at the three centers (up to 0.64) suggest correlated changes in the wind-driven drift patterns. Seasonal trends in ice edge are linked to trends in meridional winds and also to on-ice/off-ice trends in zonal winds, due to zonal asymmetry of the Antarctic ice cover. Sea ice area export at flux gates that parallel the 1000-m isobath were extended to cover the 34-year record. Interannual variability in ice export in the Ross and Weddell seas linked to the depth and location of the Amundsen Sea and Riiser-Larsen Sea lows to their east. Compared to shorter records, where there was a significant positive trend in Ross Sea ice area flux, the longer 34-year trends of outflow from both seas are now statistically insignificant.


2016 ◽  
Vol 29 (2) ◽  
pp. 889-902 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Ivana Cvijanovic ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract Reduction of the Arctic sea ice cover can affect the atmospheric circulation and thus impact the climate beyond the Arctic. The atmospheric response may, however, vary with the geographical location of sea ice loss. The atmospheric sensitivity to the location of sea ice loss is studied using a general circulation model in a configuration that allows combination of a prescribed sea ice cover and an active mixed layer ocean. This hybrid setup makes it possible to simulate the isolated impact of sea ice loss and provides a more complete response compared to experiments with fixed sea surface temperatures. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming, which peaks over the area of ice loss. The maximum warming is found during winter, delayed compared to the maximum sea ice reduction. The wintertime response of the midlatitude atmospheric circulation shows a nonuniform sensitivity to the location of sea ice reduction. While all three scenarios exhibit decreased zonal winds related to high-latitude geopotential height increases, the magnitudes and locations of the anomalies vary between the simulations. Investigation of the North Atlantic Oscillation reveals a high sensitivity to the location of the ice loss. The northern center of action exhibits clear shifts in response to the different sea ice reductions. Sea ice loss in the Atlantic and Pacific sectors of the Arctic cause westward and eastward shifts, respectively.


2012 ◽  
Vol 6 (4) ◽  
pp. 871-880 ◽  
Author(s):  
C. L. Parkinson ◽  
D. J. Cavalieri

Abstract. In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has (like the Arctic) instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but the magnitudes of the two trends differ, and in some cases these differences allow inferences about the corresponding changes in sea ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.


2020 ◽  
Vol 20 (20) ◽  
pp. 11869-11892
Author(s):  
Ilias Bougoudis ◽  
Anne-Marlene Blechschmidt ◽  
Andreas Richter ◽  
Sora Seo ◽  
John Philip Burrows ◽  
...  

Abstract. Every polar spring, phenomena called bromine explosions occur over sea ice. These bromine explosions comprise photochemical heterogeneous chain reactions that release bromine molecules, Br2, to the troposphere and lead to tropospheric plumes of bromine monoxide, BrO. This autocatalytic mechanism depletes ozone, O3, in the boundary layer and troposphere and thereby changes the oxidizing capacity of the atmosphere. The phenomenon also leads to accelerated deposition of metals (e.g., Hg). In this study, we present a 22-year (1996 to 2017) consolidated and consistent tropospheric BrO dataset north of 70∘ N, derived from four different ultraviolet–visible (UV–VIS) satellite instruments (GOME, SCIAMACHY, GOME-2A and GOME-2B). The retrieval data products from the different sensors are compared during periods of overlap and show good agreement (correlations of 0.82–0.98 between the sensors). From our merged time series of tropospheric BrO vertical column densities (VCDs), we infer changes in the bromine explosions and thus an increase in the extent and magnitude of tropospheric BrO plumes during the period of Arctic warming. We determined an increasing trend of about 1.5 % of the tropospheric BrO VCDs per year during polar springs, while the size of the areas where enhanced tropospheric BrO VCDs can be found has increased about 896 km2 yr−1. We infer from comparisons and correlations with sea ice age data that the reported changes in the extent and magnitude of tropospheric BrO VCDs are moderately related to the increase in first-year ice extent in the Arctic north of 70∘ N, both temporally and spatially, with a correlation coefficient of 0.32. However, the BrO plumes and thus bromine explosions show significant variability, which also depends, apart from sea ice, on meteorological conditions.


2020 ◽  
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Luisa von Albedyll ◽  
Tatiana A. Alekseeva ◽  
Sergei V. Frolov ◽  
...  

Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exits the Arctic Ocean through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated time series of extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20 % thinning of modal ice thickness since 2001. A comparison with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age and number of freezing degree days. We also show that the increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only responsible for sea ice thinning in and around the Laptev Sea, but also that the induced thickness anomalies persist beyond the Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate the impact of Atlantification on sea ice growth in the eastern marginal ice zone, which will increasingly be felt in other parts of the sea ice covered Arctic.


2012 ◽  
Vol 9 (2) ◽  
pp. 2055-2093 ◽  
Author(s):  
P. Coupel ◽  
H. Y. Jin ◽  
M. Joo ◽  
R. Horner ◽  
H. A. Bouvet ◽  
...  

Abstract. A large part of the Pacific Arctic basin experiences ice-free conditions in summer as a result of sea ice cover steadily decreasing over the last decades. To evaluate the impact of ice retreat on the Arctic ecosystem, we investigated phytoplankton communities from coastal sites (Chukchi shelf) to northern deep basins (up to 86° N), during year 2008 of high melting. Pigment and taxonomy in situ data were acquired under different ice regime: the ice -free basins (IFB, 74°–77° N), the marginal ice zone (MIZ, 77°–80° N) and the heavy ice covered basins (HIB, >80° N). Our results suggest that extensive ice melting provided favorable conditions to chrysophytes and prymnesiophytes growth and more hinospitable to pico-sized prasinophytes and micro-sized dinoflagellates. Larger cell diatoms were less abundant in the IFB while dominant in the MIZ of the deep Canadian basin. Our data were compared to those obtained during more icy years, 1994 and to a lesser extent, 2002. Freshening, stratification, light and nutrient availability are discussed as possible causes for observed phytoplankton communities under high and low sea ice cover.


2020 ◽  
Author(s):  
Valeria Selyuzhenok ◽  
Denis Demchev ◽  
Thomas Krumpen

<p>Landfast sea ice is a dominant sea ice feature of the Arctic coastal region. As a part of Arctic sea ice cover, landfast ice is an important part of coastal ecosystem, it provides functions as a climate regulator and platform for human activity. Recent changes in sea ice conditions in the Arctic have also affected landfast ice regime. At the same time, industrial interest in the Arctic shelf seas continue to increase. Knowledge on local landfast ice conditions are required to ensure safety of on ice operations and accurate forecasting.  In order to obtain a comprehensive information on landfast ice state we use a time series of wide swath SAR imagery.  An automatic sea ice tracking algorithm was applied to the sequential SAR images during the development stage of landfast ice cover. The analysis of resultant time series of sea ice drift allows to classify homogeneous sea ice drift fields and timing of their attachment to the landfast ice. In addition, the drift data allows to locate areas of formation of grounded sea ice accumulation called stamukha. This information сan be useful for local landfast ice stability assessment. The study is supported by the Russian Foundation for Basic Research (RFBR) grant 19-35-60033.</p>


Sign in / Sign up

Export Citation Format

Share Document