Supplementary material to "The role of grain-size evolution on the rheology of ice: Implications for reconciling laboratory creep data and the Glen flow law"

Author(s):  
Mark D. Behn ◽  
David L. Goldsby ◽  
Greg Hirth
2021 ◽  
Vol 15 (9) ◽  
pp. 4589-4605
Author(s):  
Mark D. Behn ◽  
David L. Goldsby ◽  
Greg Hirth

Abstract. Viscous flow in ice is often described by the Glen flow law – a non-Newtonian, power-law relationship between stress and strain rate with a stress exponent n ∼ 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice can be strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain size dependence of ice rheology. Experimental studies find that neither dislocation creep (n ∼ 4) nor grain boundary sliding (n ∼ 1.8) have stress exponents that match the value of n ∼ 3 in the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form is not explained by a single deformation mechanism. Here we seek to understand the origin of the n ∼ 3 dependence of the Glen law by using the “wattmeter” to model grain size evolution in ice. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. Using the wattmeter, we calculate grain size evolution in two end-member cases: (1) a 1-D shear zone and (2) as a function of depth within an ice sheet. Calculated grain sizes match both laboratory data and ice core observations for the interior of ice sheets. Finally, we show that variations in grain size with deformation conditions result in an effective stress exponent intermediate between grain boundary sliding and dislocation creep, which is consistent with a value of n = 3 ± 0.5 over the range of strain rates found in most natural systems.


2021 ◽  
Author(s):  
Ludovic Räss ◽  
Thibault Duretz

<p>Ice’s predominantly viscous rheology exhibits a significant temperature and strain-rate dependence, commonly captured as a single deformation mechanism by Glen's flow law. However, Glen’s power-law relationship may fail to capture accurate stress levels at low and elevated strain-rates ultimately leading to velocity over- and under-estimates, respectively. Alternative more complex flow laws such as Goldsby rheology combine various creep mechanisms better accounting for micro-scale observations resulting in enhanced localisation of ice flow at glacier scales and internal sliding.</p><p>The challenge in implementing Goldsby rheology arises with the need of computing an accurate partitioning of the total strain-rate among the active creep mechanisms. Some of these mechanisms exhibit grain-size evolution sensitivity potentially impacting the larger scale ice dynamics.</p><p>We here present a consistent way to compute the effective viscosity of the ice using Goldsby rheology for temperature and strain-rate ranges relevant to ice flow. We implement a local iteration procedure to ensure accurate implicit partitioning of the total strain-rate among the active creep mechanisms including grain-size evolution. We discuss the composite deformation maps and compare the results against Glen's flow law. We incorporate our implicit rheology solver into an implicit 2D thermo-mechanical ice flow solver to investigate localisation of ice flow over variable topography and in shear margin configurations. We quantify discrepancies  in surface velocity patterns when using Goldsby rheology instead of Glen's flow law.</p>


2020 ◽  
Author(s):  
Mark D. Behn ◽  
David L. Goldsby ◽  
Greg Hirth

Abstract. Viscous flow in ice is often described by the Glen flow law – a non-Newtonian, power-law relationship between stress and strain-rate with a stress exponent n ~ 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice can be strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain-size dependence of ice rheology. Experimental studies find that neither dislocation creep (n ~ 4) nor grain boundary sliding (n ~ 1.8) have stress exponents that match the value of n ~ 3 in the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form is not explained by a single deformation mechanism. Here we seek to understand the origin of the n ~ 3 dependence of the Glen law by using the wattmeter to model grain-size evolution in ice. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. Using the wattmeter, we calculate grain size evolution in two end-member cases: (1) a 1-D shear zone, and (2) as a function of depth within an ice-sheet. Calculated grain sizes match both laboratory data and ice core observations for the interior of ice sheets. Finally, we show that variations in grain size with deformation conditions result in an effective stress exponent intermediate between grain boundary sliding and dislocation creep, which is consistent with a value of n = 3 ± 0.5 over the range of strain rates found in most natural systems.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 492
Author(s):  
Jan Foder ◽  
Jaka Burja ◽  
Grega Klančnik

Titanium additions are often used for boron factor and primary austenite grain size control in boron high- and ultra-high-strength alloys. Due to the risk of formation of coarse TiN during solidification the addition of titanium is limited in respect to nitrogen. The risk of coarse nitrides working as non-metallic inclusions formed in the last solidification front can degrade fatigue properties and weldability of the final product. In the presented study three microalloying systems with minor additions were tested, two without any titanium addition, to evaluate grain size evolution and mechanical properties with pre-defined as-cast, hot forging, hot rolling, and off-line heat-treatment strategy to meet demands for S1100QL steel. Microstructure evolution from hot-forged to final martensitic microstructure was observed, continuous cooling transformation diagrams of non-deformed austenite were constructed for off-line heat treatment, and the mechanical properties of Nb and V–Nb were compared to Ti–Nb microalloying system with a limited titanium addition. Using the parameters in the laboratory environment all three micro-alloying systems can provide needed mechanical properties, especially the Ti–Nb system can be successfully replaced with V–Nb having the highest response in tensile properties and still obtaining satisfying toughness of 27 J at –40 °C using Charpy V-notch samples.


Wear ◽  
2021 ◽  
pp. 203678
Author(s):  
Vahid Javaheri ◽  
Oskari Haiko ◽  
Saeed Sadeghpour ◽  
Kati Valtonen ◽  
Jukka Kömi ◽  
...  

Author(s):  
Hiroto Shiraki ◽  
Masahiro Sugiyama ◽  
Yuhji Matsuo ◽  
Ryoichi Komiyama ◽  
Shinichiro Fujimori ◽  
...  

In the original publication of the article, the incorrect file was published as supplementary material.


2017 ◽  
Vol 18 (12) ◽  
pp. 4342-4355 ◽  
Author(s):  
Andrew J. Turner ◽  
Richard F. Katz ◽  
Mark D. Behn ◽  
Tobias Keller

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1019 ◽  
Author(s):  
Angella ◽  
Donnini ◽  
Ripamonti ◽  
Górny ◽  
Zanardi

Tensile testing on ductile iron GJS 400 with different microstructures produced through four different cooling rates was performed in order to investigate the relevance of the microstructure’s parameters on its plastic behaviour. Tensile flow curve modelling was carried out with the Follansbee and Estrin-Kocks-Mecking approach that allowed for an explicit correlation between plastic behaviour and some microstructure parameters. In the model, the ferritic grain size and volume fraction of pearlite and ferrite gathered in the first part of this investigation were used as inputs, while other parameters, like nodule count and interlamellar spacing in pearlite, were neglected. The model matched very well with the experimental flow curves at high strains, while some mismatch was found only at small strains, which was ascribed to the decohesion between the graphite nodules and the ferritic matrix that occurred just after yielding. It can be concluded that the plastic behaviour of GJS 400 depends mainly on the ferritic grain size and pearlitic volume fraction, and other microstructure parameters can be neglected, primarily because of their high nodularity and few defects.


Sign in / Sign up

Export Citation Format

Share Document