scholarly journals Supplementary material to "Impact of lateral groundwater flow on hydrothermal conditions of the active layer in a high arctic hillslope setting"

Author(s):  
Alexandra Hamm ◽  
Andrew Frampton
2021 ◽  
Vol 15 (10) ◽  
pp. 4853-4871
Author(s):  
Alexandra Hamm ◽  
Andrew Frampton

Abstract. Modeling the physical state of permafrost landscapes is a crucial addition to field observations in order to understand the feedback mechanisms between permafrost and the atmosphere within a warming climate. A common hypothesis in permafrost modeling is that vertical heat conduction is most relevant to derive subsurface temperatures. While this approach is mostly applicable to flat landscapes with little topography, landscapes with more topography are subject to lateral flow processes as well. With our study, we contribute to the growing body of evidence that lateral surface and subsurface processes can have a significant impact on permafrost temperatures and active layer properties. We use a numerical model to simulate two idealized hillslopes (a steep and a medium case) with inclinations that can be found in Adventdalen, Svalbard, and compare them to a flat control case. We find that ground temperatures within the active layer uphill are generally warmer than downhill in both slopes (with a difference of up to ∼0.8 ∘C in the steep and ∼0.6 ∘C in the medium slope). Further, the slopes are found to be warmer in the uphill section and colder in the base of the slopes compared to the flat control case. As a result, maximum thaw depth increases by about 5 cm from the flat (0.98 m) to the medium (1.03 m) and the steep slope (1.03 m). Uphill warming on the slopes is explained by overall lower heat capacity, additional energy gain through infiltration, and lower evaporation rates due to drier conditions caused by subsurface runoff. The major governing process causing the cooling on the downslope side is heat loss to the atmosphere through evaporation in summer and enhanced heat loss in winter due to wetter conditions and resulting increased thermal conductivity. On a catchment scale, these results suggest that temperature distributions in sloped terrain can vary considerably compared to flat terrain, which might impact the response of subsurface hydrothermal conditions to ongoing climate change.


2021 ◽  
Author(s):  
Alexandra Hamm ◽  
Andrew Frampton

Abstract. Modeling the physical state of permafrost landscapes is a crucial addition to field observations in order to understand its feedback mechanisms within a warming climate. A common hypothesis in permafrost modeling is that vertical heat conduction is most relevant to derive subsurface temperatures. While this approach is mostly applicable to flat landscapes with little topography, landscapes with more topography are subject to lateral flow process as well. With our study, we want to contribute to the growing body of evidence that lateral surface- and subsurface processes can have a significant impact on permafrost temperatures and active layer properties. We use a numerical model to simulated two idealized hillslopes with inclinations that can be found in Adventdalen, Svalbard, and compare them to a flat control case. We find that ground temperatures within the active layer uphill are generally warmer than downhill in both slopes (up to ~1.2 °C in the steep, and ~0.7 °C in the medium slope). Further, the slopes are found to be warmer in the uphill section and colder in the very bottom of the slopes compared to the flat control case. As a result, maximum thaw depth increases by about 5 cm from the flat (75 cm) to the steep slope (80 cm), while the medium case does not exhibit a deepening in thaw depth (75 cm). Uphill warming on the slopes is explained by additional energy gain through infiltration and lower evaporation rates due to a overall drier environment. The major governing process causing the cooling on the downslope side is heat loss to the atmosphere through evaporation in summer and enhanced heat loss in winter due to wetter conditions and resulting higher thermal conductivity. On a catchment scale, these results suggest that temperature distributions in hilly terrain can vary considerably compared to flat terrain, which might change the response of subsurface hydrothermal conditions to ongoing climate change.


2000 ◽  
Vol 37 (2) ◽  
pp. 449-462 ◽  
Author(s):  
Charles Harris ◽  
Antoni G Lewkowicz

Active-layer detachment slides are locally common on Fosheim Peninsula, Ellesmere Island, where permafrost is continuous, the active layer is 0.5-0.75 m thick, and summer temperatures are unusually high in comparison with much of the Canadian High Arctic. In this paper we report pore-water pressures at the base of the active layer, recorded in situ on two slopes in late July and early August 1995. These data form the basis for slope stability analyses based on effective stress conditions. During fieldwork, the factor of safety within an old detachment slide on a slope at Hot Weather Creek was slightly greater than unity. At "Big Slide Creek," on a slope showing no evidence of earlier detachment failures, the factor of safety was less than unity on a steep basal slope section but greater than unity elsewhere. In the upper slope, pore-water pressures were only just subcritical. Sensitivity analyses demonstrate that the stability of the shallow active layer is strongly influenced by changes in soil shear strength. Possible mechanisms for reduction in shear strength through time include weathering of soils and gradual increases in basal active layer ice content. However, we suggest here that soil shearing during annual gelifluction movements is most likely to progressively reduce shear strengths at the base of the active layer from peak values to close to residual, facilitating the triggering of active-layer detachment failures.Key words: detachment slides, Ellesmere Island, pore-water pressures, gelifluction.


2020 ◽  
Author(s):  
Mariusz Majdanski ◽  
Artur Marciniak ◽  
Bartosz Owoc ◽  
Wojciech Dobiński ◽  
Tomasz Wawrzyniak ◽  
...  

<p>The Arctic regions are the place of the fastest observed climate change. One of the indicators of such evolution are changes occurring in the glaciers and the subsurface in the permafrost. The active layer of the permafrost as the shallowest one is well measured by multiple geophysical techniques and in-situ measurements.</p><p>Two high arctic expeditions have been organized to use seismic methods to recognize the shape of the permafrost in two seasons: with the unfrozen ground (October 2017) and frozen ground (April 2018). Two seismic profiles have been designed to visualize the shape of permafrost between the sea coast and the slope of the mountain, and at the front of a retreating glacier. For measurements, a stand-alone seismic stations has been used with accelerated weight drop with in-house modifications and timing system. Seismic profiles were acquired in a time-lapse manner and were supported with GPR and ERT measurements, and continuous temperature monitoring in shallow boreholes.</p><p>Joint interpretation of seismic and auxiliary data using Multichannel analysis of surface waves, First arrival travel-time tomography and Reflection imaging show clear seasonal changes affecting the active layer where P-wave velocities are changing from 3500 to 5200 m/s. This confirms the laboratory measurements showing doubling the seismic velocity of water-filled high-porosity rocks when frozen. The same laboratory study shows significant (>10%) increase of velocity in frozen low porosity rocks, that should be easily visible in seismic.</p><p>In the reflection seismic processing, the most critical part was a detailed front mute to eliminate refracted arrivals spoiling wide-angle near-surface reflections. Those long offset refractions were however used to estimate near-surface velocities further used in reflection processing. In the reflection seismic image, a horizontal reflection was traced at the depth of 120 m at the sea coast deepening to the depth of 300 m near the mountain.</p><p>Additionally, an optimal set of seismic parameters has been established, clearly showing a significantly higher signal to noise ratio in case of frozen ground conditions even with the snow cover. Moreover, logistics in the frozen conditions are much easier and a lack of surface waves recorded in the snow buried geophones makes the seismic processing simpler.</p><p>Acknowledgements               </p><p>This research was funded by the National Science Centre, Poland (NCN) Grant UMO-2015/21/B/ST10/02509.</p>


2017 ◽  
Author(s):  
Franziska Köllner ◽  
Johannes Schneider ◽  
Megan D. Willis ◽  
Thomas Klimach ◽  
Frank Helleis ◽  
...  

2017 ◽  
Vol 3 (2) ◽  
pp. 429-450 ◽  
Author(s):  
Melissa J. Lafrenière ◽  
Nicole L. Louiseize ◽  
Scott F. Lamoureux

This study investigates the impacts of active layer detachments (ALDs) on nitrogen in seasonal runoff from High Arctic hillslope catchments. We examined dissolved nitrogen in runoff from an undisturbed catchment (Goose (GS)) and one that was disturbed (Ptarmigan (PT)) by ALDs, prior to disturbance (2007) and 5 years after disturbance (2012). The seasonal dynamics of nitrogen species concentrations and fluxes were similar in both catchments in 2007, but the mean seasonal nitrate concentration and mass flux from the disturbed catchment were on the order of 30 times higher relative to the undisturbed catchment in 2012. Stormflow yielded 45% and 60% of the 2012 total dissolved nitrogen flux in GS and PT, respectively, although rainfall runoff provided less than 25% of seasonal discharge. Results support that through the combined effects of increased disturbance and rainfall, climate change stands to significantly enhance the export of nitrate from High Arctic watersheds. This study highlights that the increase in the delivery of nitrate from disturbance is especially pronounced late in the season when downstream productivity and the biological demand for this often limiting nutrient are high. Our results also demonstrate that the impact of ALDs on nitrate export can persist more than 5 years following disturbance.


Sign in / Sign up

Export Citation Format

Share Document