scholarly journals Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan

2014 ◽  
Vol 8 (2) ◽  
pp. 377-386 ◽  
Author(s):  
M. Juen ◽  
C. Mayer ◽  
A. Lambrecht ◽  
H. Han ◽  
S. Liu

Abstract. To quantify the ablation processes on a debris covered glacier, a simple distributed ablation model has been developed and applied to a selected glacier. For this purpose, a set of field measurements was carried out to collect empirical data. A morphometric analysis of the glacier surface enables us to capture statistically the areal distribution of topographic features that influence debris thickness and consequently ablation. Remote-sensing techniques, using high-resolution satellite imagery, were used to extrapolate the in situ point measurements to the whole ablation area and to map and classify melt-relevant surface types. As a result, a practically applicable method is presented that allows the estimation of ablation on a debris covered glacier by combining field data and remote-sensing information. The sub-debris ice ablation accounts for about 24% of the entire ice ablation, while the percentage of the moraine covered area accounts for approximately 32% of the entire glacierized area. Although the ice cliffs occupy only 1.7% of the debris covered area, the melt amount accounts for approximately 12% of the total sub-debris ablation and 2.5% of the total ablation respectively. Our study highlights the influence of debris cover on the response of the glacier terminus in a particular climate setting. Due to the fact that melt rates beyond 0.1 m of moraine cover are highly restricted, the shielding effect of the debris cover dominates over the temperature and elevation dependence of the ablation in the bare ice case.

2013 ◽  
Vol 7 (6) ◽  
pp. 5307-5332 ◽  
Author(s):  
M. Juen ◽  
C. Mayer ◽  
A. Lambrecht ◽  
H. Haidong ◽  
L. Shiyin

Abstract. To quantify the ablation processes on a debris covered glacier, a simple distributed ablation model has been developed and applied to a selected glacier. For this purpose, a bundle of field measurements was carried out to collect empirical data. A morphometric analysis of the glacier surface enables us to statistically capture the areal distribution of topographic features that influence debris thickness and consequently ablation. Remote sensing techniques, using high resolution satellite imagery, were used to extrapolate the ground truth results to the whole ablation area and to map and classify melt-relevant surface types. As a result, a practically applicable method is presented, that allows the estimation of ablation on a debris covered glacier by combining field data and remote sensing information. The sub-debris ice ablation accounts for about 19% of the entire ice ablation, while the percentage of the moraine covered area accounts for approximately 32% of the entire glacerized area. Although the ice cliffs occupy only 1.7% of the debris covered area the melt amount accounts for approximately 15% of the total sub-debris ablation and 2.7% of the total ablation respectively. Our study highlights the influence of debris cover on the response of the glacier terminus to climate warming. Due to the fact that melt rates beyond 0.1m of moraine cover are highly restricted the shielding effect of the debris cover dominates over the temperature- and elevation dependence of the ablation in the bare ice case.


2021 ◽  
Author(s):  
Purushottam Kumar Garg ◽  
Aparna Shukla ◽  
Santosh Kumar Rai ◽  
Jairam Singh Yadav

<p>This study presents field evidences (October 2018) and remote sensing measurements (2000-2020) to show stagnant conditions of lower ablation zone (LAZ) of the ‘companion glacier’, central Himalaya, India and its implication on the morphological evolution. The Companion glacier is named so as it accompanied the Chorabari glacier (widely studied benchmark glacier in the central Himalaya) in the distant past. Supraglacial debris thickness, supraglacial ponds anf other morphological features (e.g. lateral moraine height, supraglacial mounds) were measured/observed in the field. Glacier area, length, debris extent, surface elevation change and surface ice velocity were estimated using satellite remote sensing data from Landsat-TM/ETM+/OLI, Sentinel-MSI, Terra-ASTER and SRTM, Cartosat-1 and Google Earth images. Results show that the glacier has very small accumulation area and it is mainly fed by avalanches. The headwall of glacier is very steep which causes frequent avalanches leading to voluminous debris addition to the glacier system. Consequently, about 80% area of the glacier is debris-covered. The debris is very thick in the LAZ exceeding several meters in the LAZ and comprised of big boulders making debris thickness measurements practically impossible particularly in the snout region. However, debris thickness decreases with increasing distance from the snout and is in the order of 20-40 cm at about 2.5 km upglacier. The huge debris cover has protected the glacier ice from rapid melting. That’s why surface lowering of the glacier is less as compared to nearby Chorabari glacier. Moreover, due to (a) less mass supply from upper reaches and (b) huge debris cover, the glacier movement is very slow. The movement is too low that is allowed vegetation (some big grasses with wooded stems) to grow and survive on the glacier surface. The slow moving LAZ also causing bulging on the upper ablation zone (UAZ). Consequently, several mounds have developed on the UAZ. Thin debris slides down from mounds exposing the ice underneath for melting. Owing to these processes, spot melting is now a dominant mechanism of glacier wastage in the companion glacier. Thus, it can be summarized that careful field observations along with remote sensing estimates can be very important for understanding the glacier evolution.</p>


2021 ◽  
Vol 13 (17) ◽  
pp. 3398
Author(s):  
Puyu Wang ◽  
Hongliang Li ◽  
Zhongqin Li ◽  
Yushuo Liu ◽  
Chunhai Xu ◽  
...  

The seasonal surface changes of glaciers in Tien Shan have seen little prior investigation despite the increase in geodetic studies of multi-year changes. In this study, we analyzed the potential of an Unmanned Aerial Vehicle (UAV) to analyze seasonal surface change processes of the Urumqi Glacier No. 1 in eastern Tien Shan. We carried out UAV surveys at the beginning and the end of the ablation period in 2018. The high-precision evolution of surface elevation, geodetic mass changes, surface velocity, and terminus change in the surveyed ablation area were correspondingly derived in combination with ground measurements, including stake/snow-pit observation and GPS measurement. The derived mean elevation change in the surveyed ablation area was −1.64 m, corresponding to the geodetic mass balance of approximately −1.39 m w.e. during the ablation period in 2018. The mean surface velocity was 3.3 m/yr and characterized by the spatial change of the velocity, which was less in the East Branch than in the West Branch. The UAV survey results were a little less than those from the ground measurements, and the correlation coefficient was 0.88 for the surface elevation change and 0.87 for surface displacement. The relative error of the glacier terminus change was 4.5% for the East Branch and 6.2% for the West Branch. These results show that UAV photogrammetry is ideal for assessing seasonal glacier surface changes and has a potential application in the monitoring of detailed glacier changes.


2020 ◽  
Author(s):  
Evan Miles ◽  
Michael McCarthy ◽  
Amaury Dehecq ◽  
Marin Kneib ◽  
Stefan Fugger ◽  
...  

<p>Glaciers in High Mountain Asia have experienced intense scientific scrutiny in the past decade due to their hydrological and societal importance. The explosion of freely-available satellite observations has greatly advanced our understanding of their thinning, motion, and overall mass losses, and it has become clear that they exhibit both local and regional variations due to debris cover, surging and climatic regime. However, our understanding of glacier accumulation and ablation rates is limited to a few individual sites, and altitudinal surface mass balance is essentially unknown across the vast region.</p><p>Here we combine recent assessments of ice thickness and surface velocity to correct observed glacier thinning rates for mass redistribution in a flowband framework to derive the first estimates of altitudinal glacier surface mass balance across the region. We first evaluate our results at the glacier scale with all available glaciological field measurements (27 glaciers), then analyze 4665 glaciers (we exclude surging and other anomalous glaciers) comprising 43% of area and 36% of mass for glaciers larger than 2 km<sup>2</sup> in the region. The surface mass balance results allow us to determine the equilibrium line altitude for each glacier for the period 2000-2016.  We then aggregate our altitudinal and hypsometric surface mass balance results to produce idealised profiles for distinct subregions, enabling us to consider the subregional heterogeneity of mass balance and the importance of debris-covered ice for the region’s overall ablation.</p><p>We find clear patterns of ELA variability across the region.  9% of glaciers accumulate mass over less than 10% of their area on average for the study period. These doomed  glaciers are concentrated in Nyainqentanglha, which also has the most negative mass balance of the subregions, whereas accumulation area ratios of 0.7-0.9 are common for glaciers in the neutral-balance Karakoram and Kunlun Shan. We find that surface debris extent is negatively correlated with ELA, explaining up to 1000 m of variability across the region and reflecting the importance of avalanching as a mass input for debris-covered glaciers at lower elevations. However, in contrast with studies of thinning rates alone, we find a clear melt reduction for low-elevation debris-covered glacier areas, consistent across regions, largely resolving the ‘debris cover anomaly’.  </p><p>Our results provide a comprehensive baseline for the health of the High Asian ice reservoirs in the early 21<sup>st</sup> Century. The estimates of altitudinal surface mass balance and ELAs will additionally enable novel strategies for the calibration of glacier and hydrological models. Finally, our results emphasize the potential of combined remote-sensing observations to understand the environmental factors and physical processes responsible for High Asia’s heterogeneous patterns of recent glacier evolution.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Lavkush Kumar Patel ◽  
Parmanand Sharma ◽  
Ajit Singh ◽  
Sunil Oulkar ◽  
Bhanu Pratap ◽  
...  

A large number of glaciers in the Hindu-Kush Himalaya are covered with debris in the lower part of the ablation zone, which is continuously expanding due to enhanced glacier mass loss. The supraglacial debris transported over the melting glacier surface acts as an insulating barrier between the ice and atmospheric conditions and has a strong influence on the spatial distribution of surface ice melt. We conducted in-situ field measurements of point-wise ablation rate, supraglacial debris thickness, and debris temperature to examine the thermal resistivity of the debris pack and its influence on ablation over three glaciers (Bara Shigri, Batal, and Kunzam) in Chandra Basin of Western Himalaya during 2016–2017. Satellite-based supraglacial debris cover assessment shows an overall debris covered area of 15% for Chandra basin. The field data revealed that the debris thickness varied between 0.5 and 326 cm, following a spatially distributed pattern in the Chandra basin. The studied glaciers have up to 90% debris cover within the ablation area, and together represent ∼33.5% of the total debris-covered area in the basin. The supraglacial debris surface temperature and near-surface air temperature shows a significant correlation (r = > 0.88, p = < 0.05), which reflects the effective control of energy balance over the debris surface. The thermal resistivity measurements revealed low resistance (0.009 ± 0.01 m2°C W−1) under thin debris pack and high resistance (0.55 ± 0.09 m2°C W−1) under thick debris. Our study revealed that the increased thickness of supraglacial debris significantly retards the glacier ablation due to its high thermal resistivity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Thomas Loriaux ◽  
Lucas Ruiz

Known for their important role in locally enhancing surface melt, supraglacial ponds and ice cliffs are common features on debris-covered glaciers. We use high resolution satellite imagery to describe pond-cliff systems and surface velocity on Verde debris-covered glacier, Monte Tronador, and Southern Chile. Ponds and ice cliffs represent up to 0.4 and 2.7% of the glacier debris-covered area, respectively. Through the analyzed period and the available data, we found a seasonality in the number of detected ponds, with larger number of ponds at the beginning of the ablation season and less at the end of it. Using feature tracking, we determined glacier surface velocity, finding values up to 55 m/yr on the upper part of the debris-covered area, and decreasing almost to stagnation in the terminus. We found that larger ponds develop in glacier zones of low velocity, while zones of high velocity only contain smaller features. Meanwhile, ice cliffs appeared to be less controlled by surface velocity and gradient. Persistent ice cliffs were detected between 2009 and 2019 and backwasting up to 24 m/yr was measured, highlighting significant local glacier wastage.


2015 ◽  
Vol 56 (70) ◽  
pp. 9-16 ◽  
Author(s):  
Bhanu Pratap ◽  
D.P. Dobhal ◽  
Manish Mehta ◽  
Rakesh Bhambri

AbstractMost of the central Himalayan glaciers have surface debris layers of variable thickness, which greatly affect the ablation rate. An attempt has been made to relate debris-cover thickness to glacier surface melting. Thirty stakes were used to calculate ablation for debris-covered and clean ice of Dokriani Glacier (7 km2) from 2009/10 to 2012/13. Our study revealed significant altitude-wise difference in the rate of clean and debris-covered ice melting. We found a high correlation (R2 = 0.92) between mean annual clean-ice ablation and altitude, and a very low correlation (R2 = 0.14) between debris-covered ice melting and altitude. Debris-covered ice ablation varies with variation in debris thickness from 1 to 40 cm; ablation was maximum under debris thicknesses of 1–6 cm and minimum under 40 cm. Even a small debris-cover thickness (1–2 cm) reduces ice melting as compared to that of clean ice on an annual basis. Overall, debris-covered ice ablation during the study period was observed to be 37% less than clean-ice ablation. Strong downwasting was also observed in the Dokriani Glacier ablation area, with average annual ablation of 1.82 m w.e. a–1 in a similar period. Our study suggests that a thinning glacier rapidly becomes debris-covered over the ablation area, reducing the rate of ice loss.


2016 ◽  
Vol 10 (3) ◽  
pp. 1105-1124 ◽  
Author(s):  
Leif S. Anderson ◽  
Robert S. Anderson

Abstract. Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris–glacier–climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 simulations on a linear bed profile in which a hypothetical steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier terminus. Our model and parameter selections can produce 2-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Debris deposited near the equilibrium-line altitude re-emerges high in the ablation zone and therefore impacts melt rate over a greater fraction of the glacier surface. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). Our simulations reproduce the "general trends" between debris cover, AARs, and glacier surface velocity patterns from modern debris-covered glaciers. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.


2015 ◽  
Vol 9 (5) ◽  
pp. 5373-5411 ◽  
Author(s):  
C. L. Fyffe ◽  
B. W. Brock ◽  
M. P. Kirkbride ◽  
D. W. F. Mair ◽  
N. S. Arnold ◽  
...  

Abstract. The influence of supraglacial debris on the rate and spatial distribution of glacier surface melt is well established, but its potential impact on the structure and evolution of the drainage system of extensively debris-covered glaciers has not been previously investigated. Forty-eight dye injections were conducted on Miage Glacier, Italian Alps, throughout the 2010 and 2011 ablation seasons. An efficient conduit system emanates from moulins in the mid-part of the glacier, which are downstream of a high melt area of dirty ice and patchy debris. High melt rates and runoff concentration by intermoraine troughs encourages the early-season development of a channelized system downstream of this area. Conversely, the drainage system beneath the continuously debris-covered lower ablation area is generally inefficient, with multi-peaked traces suggesting a distributed network, which likely feeds into the conduit system fed by the upglacier moulins. Drainage efficiency from the debris-covered area increased over the season but trace flow velocity remained lower than from the upper glacier moulins. Low and less-peaked melt inputs combined with the hummocky topography of the debris-covered area inhibits the formation of an efficient drainage network. These findings are relevant to regions with extensive glacial debris cover and where debris cover is expanding.


2002 ◽  
Vol 33 (1) ◽  
pp. 75-94 ◽  
Author(s):  
Victor V. Popovnin ◽  
Anastassia V. Rozova

Superficial moraines grew in size during the entire 32-year-long period of direct monitoring of water and ice balance of the Djankuat Glacier in the Caucasus. The total area of debris cover on the glacier increased from 0.104 km2 (3% of the entire glacier surface) in 1968 to 0.266 km2 (8% of the glacier) in 1996. Such rapid dynamics of moraine formation greatly influences the ablation rate and distorts fields of mass-balance components. Sub-debris thawing can be calculated by means of a model, which describes the role of debris cover for the thermal properties of a glacier. Its meltwater equivalent depends mainly on debris thickness. In 1983 and 1994 the debris cover was repeatedly mapped over the whole glacier portion that was covered with morainic material. Sub-moraine ablation increases (vs. pure ice surface) under the thin, less than ca. 7-8 cm, debris layer, whereas the thicker debris cover reduces the liquid runoff due to its shielding effect. Zones differing due to their hydrological effect are depicted on the glacier map and the degree of debris influence on ablation is estimated quantitatively. As a whole runoff from debris-covered parts of the Djankuat Glacier has diminished due to the dominant shielding effect. Variation of the terminus is also shown to be dependent on the evolution of superficial moraine.


Sign in / Sign up

Export Citation Format

Share Document