scholarly journals Modeling debris-covered glaciers: response to steady debris deposition

2016 ◽  
Vol 10 (3) ◽  
pp. 1105-1124 ◽  
Author(s):  
Leif S. Anderson ◽  
Robert S. Anderson

Abstract. Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris–glacier–climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 simulations on a linear bed profile in which a hypothetical steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier terminus. Our model and parameter selections can produce 2-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Debris deposited near the equilibrium-line altitude re-emerges high in the ablation zone and therefore impacts melt rate over a greater fraction of the glacier surface. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). Our simulations reproduce the "general trends" between debris cover, AARs, and glacier surface velocity patterns from modern debris-covered glaciers. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

2015 ◽  
Vol 9 (6) ◽  
pp. 6423-6470
Author(s):  
L. S. Anderson ◽  
R. S. Anderson

Abstract. Debris-covered glaciers are common in rapidly-eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, mass balance gradients can be reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial advection. We ran 120 simulations in which a steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier. Our model and parameter selections produce two-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris related variables are held constant. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). The model reproduces first-order relationships between debris cover, AARs, and glacier surface velocities from glaciers in High Asia. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.


1998 ◽  
Vol 44 (147) ◽  
pp. 383-393 ◽  
Author(s):  
Jakob Wallinga ◽  
Roderik S.W. Van De Wal

AbstractA one-dimensional time-dependent flowline model of Rhonegletscher, Switzerland, has been used to test the glacier’s response to climatic warming. Mass-balance variations over the last 100 years are obtained from observations of the equilibrium-line altitude (ELA) and a reconstruction of the ELA based on a statistical correlation between temperature and ELA. For the period prior to AD 1882, for which no reliable climate data exist, we chose equilibrium-line altitudes that enabled us to simulate accurately the glacier length from AD 1602.The model simulates the historical glacier length almost perfectly and glacier geometry very well. It underestimates glacier-surface velocities by 1-18%. Following these reference experiments, we investigated the response of Rhonegletscher to a number of climate-change scenarios for the period AD 1990-2100. For a constant climate equal to the 1961-90 mean, the model predicts a 6% decrease in glacier volume by AD 2100. Rhonegletscher will retreat by almost 1 km over the next 100 years at this scenario. At a warming rate of 0.04 K a-1, only 4% of the glacier volume will be left by AD 2100.


2020 ◽  
Author(s):  
Evan Miles ◽  
Michael McCarthy ◽  
Amaury Dehecq ◽  
Marin Kneib ◽  
Stefan Fugger ◽  
...  

<p>Glaciers in High Mountain Asia have experienced intense scientific scrutiny in the past decade due to their hydrological and societal importance. The explosion of freely-available satellite observations has greatly advanced our understanding of their thinning, motion, and overall mass losses, and it has become clear that they exhibit both local and regional variations due to debris cover, surging and climatic regime. However, our understanding of glacier accumulation and ablation rates is limited to a few individual sites, and altitudinal surface mass balance is essentially unknown across the vast region.</p><p>Here we combine recent assessments of ice thickness and surface velocity to correct observed glacier thinning rates for mass redistribution in a flowband framework to derive the first estimates of altitudinal glacier surface mass balance across the region. We first evaluate our results at the glacier scale with all available glaciological field measurements (27 glaciers), then analyze 4665 glaciers (we exclude surging and other anomalous glaciers) comprising 43% of area and 36% of mass for glaciers larger than 2 km<sup>2</sup> in the region. The surface mass balance results allow us to determine the equilibrium line altitude for each glacier for the period 2000-2016.  We then aggregate our altitudinal and hypsometric surface mass balance results to produce idealised profiles for distinct subregions, enabling us to consider the subregional heterogeneity of mass balance and the importance of debris-covered ice for the region’s overall ablation.</p><p>We find clear patterns of ELA variability across the region.  9% of glaciers accumulate mass over less than 10% of their area on average for the study period. These doomed  glaciers are concentrated in Nyainqentanglha, which also has the most negative mass balance of the subregions, whereas accumulation area ratios of 0.7-0.9 are common for glaciers in the neutral-balance Karakoram and Kunlun Shan. We find that surface debris extent is negatively correlated with ELA, explaining up to 1000 m of variability across the region and reflecting the importance of avalanching as a mass input for debris-covered glaciers at lower elevations. However, in contrast with studies of thinning rates alone, we find a clear melt reduction for low-elevation debris-covered glacier areas, consistent across regions, largely resolving the ‘debris cover anomaly’.  </p><p>Our results provide a comprehensive baseline for the health of the High Asian ice reservoirs in the early 21<sup>st</sup> Century. The estimates of altitudinal surface mass balance and ELAs will additionally enable novel strategies for the calibration of glacier and hydrological models. Finally, our results emphasize the potential of combined remote-sensing observations to understand the environmental factors and physical processes responsible for High Asia’s heterogeneous patterns of recent glacier evolution.</p>


2020 ◽  
Author(s):  
Matteo Spagnolo ◽  
Brice Rea ◽  
Iestyn Barr

<p>The glacier equilibrium line altitude (ELA) represents the elevation on the glacier surface at which the amount of mass gained (via precipitation, avalanching and windblown snow, equals the amount of ice lost (via ablation and sublimation, over the mass balance year. The ELA can be measured on modern glaciers or calculated for reconstructed, former glaciers. Despite its simple definition, the ELA represents an incredibly powerful, quantitative expression of the relationship between glaciers and climate. As a glacier responds dynamically to climate, so does the ELA. Precipitation at the glacier ELA has been empirically linked to ablation season temperature. Thus, the reconstruction of former glacier geometries and their ELAs leads to the quantification of palaeoclimate.</p><p>In recent years, the concept of an “average Quaternary ELA” (or “mean Quaternary ELA”) has become popular because of the role it might play in relation to the glacial buzzsaw hypothesis, i.e. the idea that glacial erosion could offset mountain uplift and therefore control and limit the growth of mountains. Attempts to determine the average Quaternary ELA have been undertaken, leading to some interesting conclusions. For example, it has been argued that the floor altitudes of glacial cirques can be used as a measure of average Quaternary ELA, therefore implying that average Quaternary mountain glaciers expansion was confined to the topmost portion of alpine valleys.</p><p>Time has passed from these initial attempts to determine the average Quaternary ELA and more palaeoclimatic and palaeoglaciological data have become available, so it is appropriate to reconsider these calculations and perhaps question the validity of such a concept. To do so, we revisit how the idea of an average Quaternary ELA developed and what such a parameter would really mean. We do so in light of a new quantitative study on the average ELA relative to both a single glacial cycle and multiple glaciations experienced during the past   ̴2.6 million years, i.e. the Quaternary. Collectively, this new study presents a very different perspective than previously suggested.</p>


1998 ◽  
Vol 44 (147) ◽  
pp. 383-393 ◽  
Author(s):  
Jakob Wallinga ◽  
Roderik S.W. Van De Wal

AbstractA one-dimensional time-dependent flowline model of Rhonegletscher, Switzerland, has been used to test the glacier’s response to climatic warming. Mass-balance variations over the last 100 years are obtained from observations of the equilibrium-line altitude (ELA) and a reconstruction of the ELA based on a statistical correlation between temperature and ELA. For the period prior to AD 1882, for which no reliable climate data exist, we chose equilibrium-line altitudes that enabled us to simulate accurately the glacier length from AD 1602.The model simulates the historical glacier length almost perfectly and glacier geometry very well. It underestimates glacier-surface velocities by 1-18%. Following these reference experiments, we investigated the response of Rhonegletscher to a number of climate-change scenarios for the period AD 1990-2100. For a constant climate equal to the 1961-90 mean, the model predicts a 6% decrease in glacier volume by AD 2100. Rhonegletscher will retreat by almost 1 km over the next 100 years at this scenario. At a warming rate of 0.04 K a-1, only 4% of the glacier volume will be left by AD 2100.


1981 ◽  
Vol 27 (96) ◽  
pp. 271-282 ◽  
Author(s):  
David P. Dethier ◽  
Jan E. Frederick

AbstractDuring 1974–75 glaciologic and geologic studies were conducted on a small (0.17 km2) avalanche-nourished glacier in the North Cascade Range of Washington. The approximate equilibrium-line altitude (ELA) for this ice body, informally called “Vesper” glacier, lies at 1475 m, some 300 m below the regional ELA value. Estimated annual accumulation was 6 100±675 mm during the two years of study; 15 to 30% of this flux resulted from avalanche and wind–transported snow. Average annual ablation during the period was 5 350 mm, giving a total net balance of + 1 600 mm for the two-year study period. “Vesper” glacier persists well below the regional snow-line because of excessive local precipitation, substantial avalanche contributions, and a favourable north-facing aspect.Neoglacial moraines indicate that maximum ELA lowering in this period was approximately 165 m and occurred prior to a.d. 1670. Minor re-advances occurred during the nineteenth century. These reconnaissance measurements are consistent with the sparse geologic data reported from other glaciers in the Cascade Range. While the relationship between regional lowering of snow-line and avalanche activity is uncertain at present, these data suggest that avalanche-nourished glaciers provide a useful record of climatic fluctuations.


1986 ◽  
Vol 32 (111) ◽  
pp. 208-218
Author(s):  
Robert J. Rogerson

AbstractThe net mass balance of four small cirque glaciers (0.7–1.4 km2) in the Torngat Mountains of northern Labrador was measured for 1981–84, allowing three complete mass-balance years to be calculated. The two largest glaciers experienced positive mass-balance conditions in 1982 while all the glaciers were negative in 1983. The temporal pattern relates directly to general climatic conditions, in particular winter snowfall. Spatial variations of mass balance on the glaciers are the result of several factors including altitude, extent of supraglacial debris cover, slope, proximity to side and backwalls of the enclosing cirque, and the height of the backwall above the ice surface. Abraham Glacier, the smallest studied and with consistently the largest negative mass balance (–1.28 m in 1983), re-advanced an average of 1.2 m each year between 1981 and 1984. Mean equilibrium-line altitude (ELA) for the four glaciers is 1050 m, varying substantially from one glacier to another (+240 to –140 m) and from year to year (+60 to –30 m).


2014 ◽  
Vol 8 (2) ◽  
pp. 377-386 ◽  
Author(s):  
M. Juen ◽  
C. Mayer ◽  
A. Lambrecht ◽  
H. Han ◽  
S. Liu

Abstract. To quantify the ablation processes on a debris covered glacier, a simple distributed ablation model has been developed and applied to a selected glacier. For this purpose, a set of field measurements was carried out to collect empirical data. A morphometric analysis of the glacier surface enables us to capture statistically the areal distribution of topographic features that influence debris thickness and consequently ablation. Remote-sensing techniques, using high-resolution satellite imagery, were used to extrapolate the in situ point measurements to the whole ablation area and to map and classify melt-relevant surface types. As a result, a practically applicable method is presented that allows the estimation of ablation on a debris covered glacier by combining field data and remote-sensing information. The sub-debris ice ablation accounts for about 24% of the entire ice ablation, while the percentage of the moraine covered area accounts for approximately 32% of the entire glacierized area. Although the ice cliffs occupy only 1.7% of the debris covered area, the melt amount accounts for approximately 12% of the total sub-debris ablation and 2.5% of the total ablation respectively. Our study highlights the influence of debris cover on the response of the glacier terminus in a particular climate setting. Due to the fact that melt rates beyond 0.1 m of moraine cover are highly restricted, the shielding effect of the debris cover dominates over the temperature and elevation dependence of the ablation in the bare ice case.


2005 ◽  
Vol 42 ◽  
pp. 1-6 ◽  
Author(s):  
J. Oerlemans ◽  
F.M. Nick

AbstractWe propose a simple, highly parameterized model of a tidewater glacier. The mean ice thickness and the ice thickness at the glacier front are parameterized in terms of glacier length and, when the glacier is calving, water depth. We use a linear relation between calving rate and water depth. The change in glacier length is determined by the total change in the mass budget (surface balance and calving flux), but not by the details of the glacier profile and the related velocity field. We show that this may still yield relatively rapid rates of retreat for an idealized bed geometry with a smooth overdeepening. The model is able to simulate the full cycle of ice-free conditions, glacier terminus on land, tidewater glaciers terminus, and backwards. We study two cases: (i) a glacier with a specific balance (accumulation) that is spatially uniform, and (ii) a glacier in a warmer climate with the specific balance being a linear function of altitude. Equilibrium states exhibit a double branching with respect to the climatic forcing (equilibrium-line altitude). One bifurcation is related to the dependence of the calving process on the bed profile; the other bifurcation is due to the height–mass-balance feedback. We discuss the structure of the solution diagram for different values of the calving-rate parameter. The model results are similar to those of Vieli and others (2001), who combined a fairly sophisticated two-dimensional (vertical plane) numerical ice-flow model with the modified flotation criterion suggested by Van der Veen (1996). With regard to the global dynamics of a tidewater glacier, we conclude that the details of the glacier profile or velocity field are less significant than the bed profile and the relation between the water depth and the calving rate.


2021 ◽  
Vol 13 (17) ◽  
pp. 3398
Author(s):  
Puyu Wang ◽  
Hongliang Li ◽  
Zhongqin Li ◽  
Yushuo Liu ◽  
Chunhai Xu ◽  
...  

The seasonal surface changes of glaciers in Tien Shan have seen little prior investigation despite the increase in geodetic studies of multi-year changes. In this study, we analyzed the potential of an Unmanned Aerial Vehicle (UAV) to analyze seasonal surface change processes of the Urumqi Glacier No. 1 in eastern Tien Shan. We carried out UAV surveys at the beginning and the end of the ablation period in 2018. The high-precision evolution of surface elevation, geodetic mass changes, surface velocity, and terminus change in the surveyed ablation area were correspondingly derived in combination with ground measurements, including stake/snow-pit observation and GPS measurement. The derived mean elevation change in the surveyed ablation area was −1.64 m, corresponding to the geodetic mass balance of approximately −1.39 m w.e. during the ablation period in 2018. The mean surface velocity was 3.3 m/yr and characterized by the spatial change of the velocity, which was less in the East Branch than in the West Branch. The UAV survey results were a little less than those from the ground measurements, and the correlation coefficient was 0.88 for the surface elevation change and 0.87 for surface displacement. The relative error of the glacier terminus change was 4.5% for the East Branch and 6.2% for the West Branch. These results show that UAV photogrammetry is ideal for assessing seasonal glacier surface changes and has a potential application in the monitoring of detailed glacier changes.


Sign in / Sign up

Export Citation Format

Share Document