scholarly journals Radar diagnosis of the subglacial conditions in Dronning Maud Land, East Antarctica

2012 ◽  
Vol 6 (3) ◽  
pp. 1781-1837
Author(s):  
S. Fujita ◽  
P. Holmlund ◽  
K. Matsuoka ◽  
H. Enomoto ◽  
K. Fukui ◽  
...  

Abstract. In order to better understand the spatial distribution of subglacial environments, ground-based radar sounding data for a total distance of ~3300 km across Dronning Maud Land, East Antarctica, were analyzed. The relationship between geometrically corrected bed returned power [Pcbed]dB in decibels and ice thickness H was examined. When H is smaller, [Pcbed]dB was found to decrease simply with increasing H, which is explicable by the thickness variation of dielectric attenuation. However, an anomalous increase in [Pcbed]dB at larger H occurred, which was independent of the choice of radar frequencies or radar-pulse widths. We suggest that the existence of water at the ice/substrate interfaces at larger H caused this anomalous increase. We herein propose a new analytical method using these features to delineate frozen and temperate bed areas. Approximately two-thirds of the investigated area was found to have a temperate bed. Basal melting tends to occur when H is larger and the surface elevation is lower. In other words, beds inland of the ice sheet tend to be temperate, with the exception of subglacial high mountains. In contrast, beds of coastal areas tend to be frozen, with the exception of fast-flowing ice at subglacial lowland or troughs. These observations suggest that subglacial water is dominantly produced at the bed of wide inland plateau and that the water is discharged to the sea dominantly through a bed of fast-flowing ice. We also found that a 20-km-wide bed in the subglacial high mountains of an inland plateau near Dome Fuji is frozen, suggesting the existence of very old ice above the bed.

2012 ◽  
Vol 6 (5) ◽  
pp. 1203-1219 ◽  
Author(s):  
S. Fujita ◽  
P. Holmlund ◽  
K. Matsuoka ◽  
H. Enomoto ◽  
K. Fukui ◽  
...  

Abstract. In order to better understand the spatial distribution of subglacial environments, ground-based radar profiling data were analyzed for a total distance of ~ 3300 km across Dronning Maud Land, East Antarctica. The relationship between geometrically corrected bed returned power [Pcbed]dB in decibels and ice thickness H was examined. When H is smaller than a~critical value that varies according to location, [Pcbed]dB tends to decrease relatively smoothly with increasing H, which is explicable primarily by the cumulative effect of dielectric attenuation within the ice. However, at locations where H is larger than the critical H values, anomalous increases and fluctuations in [Pcbed]dB were observed, regardless of the choice of radar frequency or radar-pulse width. In addition, the amplitude of the fluctuations often range 10 ~ 20 dB. We argue that the anomalous increases are caused by higher bed reflectivity associated with the existence of subglacial water. We used these features to delineate frozen and temperate beds. Approximately two-thirds of the investigated area was found to have a temperate bed. The beds of the inland part of the ice sheet tend to be temperate, with the exception of subglacial high mountains. In contrast, the beds of coastal areas tend to be frozen, with the exception of fast-flowing ice on the subglacial lowland or troughs. We argue that this new analytical method can be applied to other regions.


2000 ◽  
Vol 46 (152) ◽  
pp. 54-66 ◽  
Author(s):  
J. O. Näslund ◽  
J. L. Fastook ◽  
P. Holmlund

AbstractTime-dependent ice-sheet modelling of a 176 000 km2 area in western Dronning Maud Land, East Antarctica, provided information on the ice sheet’s response to six climate-change scenarios. Another experiment was done to study changes in ice thickness, flow and basal temperature conditions between the present ice configuration and a simulated maximum palaeo-ice sheet. The input to the model included new datasets of bed and surface topography compiled for this study. The results of the six climate-change experiments, including a 0.5°C per century global-warming scenario, show that the ice sheet has a robust behaviour with respect to the different climate changes. The maximum change in ice volume was <5% of the initial volume in all climate runs. This is for only relatively short-term climate changes without major changes in global sea level, and also a simulated ice sheet without an ice shelf. The modelled long-term response time of the ice sheet, 20 kyr or more, indicates that the ice sheet may still be adjusting to the climate change that ended the Last Glacial Maximum. In the maximum palaeo-ice-sheet simulation, with a 5°C climate cooling and the grounding line located at the continental-shelf margin, ice thickness increased drastically downstream from the Heimefrontfjella mountain range but remained basically unaffected on the upstream polar plateau. Compared to present conditions, complex changes in basal temperatures were observed. The extent of areas with basal melting increased, for example in the deep trough of the Veststraumen ice stream. Areas at intermediate elevations in the landscape also experienced increased basal temperatures, with significant areas reaching the melting point. In contrast, high-altitude areas that today are clearly cold-based, such as around Heimefrontfjella and Vestfjella and the Högisen dome, experienced a 5–10°C decrease in basal temperatures in the palaeo-ice-sheet reconstruction. The results suggest that the alpine landscape within these mountain regions was formed by wet-based local glaciers and ice sheets prior to the late Cenozoic.


2012 ◽  
Vol 53 (60) ◽  
pp. 29-34 ◽  
Author(s):  
Kenichi Matsuoka ◽  
Frank Pattyn ◽  
Denis Callens ◽  
Howard Conway

AbstractRadar power returned from the basal interface along a 42 km long profile over an ice-rise promontory and the adjacent Roi Baudouin ice shelf, Dronning Maud Land, East Antarctica, is analyzed to infer spatial variations in basal reflectivity and hence the basal environment. Extracting basal reflectivity from basal returned power requires an englacial attenuation model. We estimate attenuation in two ways: (1) using a temperature-dependent model with input from thermomechanical ice-flow models; and (2) using a radar method that linearly approximates the geometrically corrected returned power with ice thickness. The two methods give different results. We argue that attenuation calculated using a modeled temperature profile is more robust than the widely used radar method, especially in locations where depth-averaged attenuation varies spatially or where the patterns of basal reflectivity correlate with the patterns of the ice thickness.


1997 ◽  
Vol 102 (B9) ◽  
pp. 20343-20353 ◽  
Author(s):  
Cecilia Richardson ◽  
Eldar Aarholt ◽  
Svein-Erik Hamran ◽  
Per Holmlund ◽  
Elisabeth Isaksson

1990 ◽  
Vol 14 ◽  
pp. 107-110 ◽  
Author(s):  
U.C. Herzfeld ◽  
P. Holmlund

Geostatistical methods are applied in the analysis of radio-echo data from Scharffenbergbotnen, Dronning Maud Land, East Antarctica, in order to allow the following investigations: detailed and reliable cartography of subglacial bed topography and ice thickness, comparison of recent ice flow patterns and ice flow during earlier glacial maxima, and mass balance studies in relation to climatic changes.


2019 ◽  
Author(s):  
Katrin Lindbäck ◽  
Geir Moholdt ◽  
Keith W. Nicholls ◽  
Tore Hattermann ◽  
Bhanu Pratap ◽  
...  

Abstract. Thinning rates of ice shelves vary widely around Antarctica and basal melting is a major component in ice shelf mass loss. In this study, we present records of basal melting, at unique spatial and temporal resolution for East Antarctica, derived from autonomous phase-sensitive radars. These records show spatial and temporal variations of ice shelf basal melting in 2017 and 2018 at Nivlisen, central Dronning Maud Land. The annually averaged melt rates are in general moderate (~ 0.8 m yr-1). Radar profiling of the ice-shelf shows variable ice thickness from smooth beds to basal crevasses and channels. The highest melt rates (3.9 m yr-1) were observed close to a grounded feature near the ice shelf front. Daily time-varying measurements reveal a seasonal melt signal 4 km from the ice shelf front, at an ice draft of 130 m, where the highest daily melt rates occurred in summer (up to 5.6 m yr-1). This seasonality indicates that summer-warmed ocean surface water was pushed by wind beneath the ice shelf front. We observed a different melt regime 35 km into the ice-shelf cavity, at an ice draft of 280 m, with considerably lower melt rates (annual average of 0.4 m yr-1) and no seasonality. We conclude that warm deep ocean water at present has limited effect on the basal melting of Nivlisen. On the other hand, a warming in surface waters, as a result of diminishing sea-ice cover has the potential to increase basal melting near the ice-shelf front. Many ice shelves like Nivlisen are stabilized by pinning points at their ice fronts and these areas may be vulnerable to future change.


1990 ◽  
Vol 14 ◽  
pp. 107-110 ◽  
Author(s):  
U.C. Herzfeld ◽  
P. Holmlund

Geostatistical methods are applied in the analysis of radio-echo data from Scharffenbergbotnen, Dronning Maud Land, East Antarctica, in order to allow the following investigations: detailed and reliable cartography of subglacial bed topography and ice thickness, comparison of recent ice flow patterns and ice flow during earlier glacial maxima, and mass balance studies in relation to climatic changes.


1990 ◽  
Vol 8 (2) ◽  
pp. 99-126 ◽  
Author(s):  
Y. Ohta ◽  
B. O. Tørudbakken ◽  
K. Shiraishi

Author(s):  
Zhongqi Wang ◽  
Qi Han ◽  
Bauke de Vries ◽  
Li Dai

AbstractThe identification of the relationship between land use and transport lays the foundation for integrated land use and transport planning and management. This work aims to investigate how rail transit is linked to land use. The research on the relationship between land use and rail-based transport is dominated by the impacts of rail projects on land use, without an in-depth understanding of the reverse. However, it is important to note that issues of operation management rather than new constructions deserve greater attention for regions with established rail networks. Given that there is a correspondence between land use patterns and spatial distribution of heavy railway transit (HRT) services at such regions, the study area (i.e., the Netherlands) is partitioned by the Voronoi diagram of HRT stations and the causal relationship between land use and HRT services is examined by structural equation modeling (SEM). The case study of Helmond (a Dutch city) shows the potential of the SEM model for discussing the rail station selection problem in a multiple transit station region (MTSR). Furthermore, in this study, the node place model is adapted with the derivatives of the SEM model (i.e., the latent variable scores for rail service levels and land use characteristics), which are assigned as node and place indexes respectively, to analyze and differentiate the integration of land use and HRT services at the regional level. The answer to whether and how land use affects rail transit services from this study strengthens the scientific basis for rail transit operations management. The SEM model and the modified node place model are complementary to be used as analytical and decision-making tools for rail transit-oriented regional development.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gunnar S. Bali ◽  
Luca Castagnini ◽  
Markus Diehl ◽  
Jonathan R. Gaunt ◽  
Benjamin Gläßle ◽  
...  

Abstract We perform a lattice study of double parton distributions in the pion, using the relationship between their Mellin moments and pion matrix elements of two local currents. A good statistical signal is obtained for almost all relevant Wick contractions. We investigate correlations in the spatial distribution of two partons in the pion, as well as correlations involving the parton polarisation. The patterns we observe depend significantly on the quark mass. We investigate the assumption that double parton distributions approximately factorise into a convolution of single parton distributions.


Sign in / Sign up

Export Citation Format

Share Document