scholarly journals A record of Antarctic sea ice extent in the Southern Indian Ocean for the past 300 yr and its relationship with global mean temperature

2013 ◽  
Vol 7 (4) ◽  
pp. 3611-3625 ◽  
Author(s):  
C. Xiao ◽  
R. Li ◽  
S. B. Sneed ◽  
T. Dou ◽  
I. Allison

Abstract. The differing response of ice extent in the Arctic and Antarctic to global average temperature change, over approximately the last three decades, highlights the importance of reconstructing long-term sea ice history. Here, using high-resolution ice core records of methanesulfonate (MS−) from the East Antarctic Ice Sheet in Princess Elizabeth Land, we reconstruct southern Indian Ocean sea ice extent (SIE) for the sector 70° E–100° E for the period 1708–2000 A.D. Annual MS− concentration positively correlates in this sector with satellite-derived SIE for the period 1973–2000 (P < 0.05). The 293 yr MS− record of proxy SIE shows multi-decadal variations, with large decreases occurring in two warm intervals during the Little Ice Age, and during the 1940s. However, after the 1980s there is a change in phase between Antarctic SIE and global temperature change, with both increasing. This paradox is probably attributable to the strong anomaly in the Southern Annular Mode (SAM) in the recent three decades.

2015 ◽  
Vol 56 (69) ◽  
pp. 451-455 ◽  
Author(s):  
C. Xiao ◽  
T. Dou ◽  
S.B. Sneed ◽  
R. Li ◽  
I. Allison

AbstractThe differing response of ice extent in the Arctic and Antarctic to global average temperature change, over approximately the last three decades, highlights the importance of reconstructing long-term sea-ice history. Here, using high-resolution ice-core records of methane-sulfonate (MS–) from the East Antarctic ice sheet in Princess Elizabeth Land, we reconstruct southern Indian Ocean sea-ice extent (SIE) for the sector 62–92° E for the period AD 1708–2000. Annual MS– concentration positively correlates in this sector with satellite-derived SIE for the period 1979–2000 (r2 = 0.25, P < 0.02). The 293 year MS– record of proxy SIE shows multi-decadal variations, with large decreases occurring in two warm intervals during the Little Ice Age, and during the 1940s. It is very likely that the global temperature is the controlling factor of Antarctic sea-ice variation at the centennial scale, although there has been a change in phase between them in recent decades.


2011 ◽  
Vol 52 (57) ◽  
pp. 9-17 ◽  
Author(s):  
Elisabeth Schlosser ◽  
Jordan G. Powers ◽  
Michael G. Duda ◽  
Kevin W. Manning

AbstractInteractions between Antarctic sea ice and synoptic activity in the circumpolar trough have been investigated using meteorological data from European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-analysis and sea-ice data from passive-microwave measurements. Total Antarctic sea-ice extent does not show large interannual variations. However, large differences are observed on a regional/monthly scale, depending on prevailing winds and currents, and thus on the prevailing synoptic situations. the sea-ice edge is also a preferred region for cyclogenesis due to the strong meridional temperature gradient (high baroclinicity) in that area. the motivation for this study was to gain a better understanding of the interaction between sea-ice extent and the general atmospheric flow, particularly the frequency of warm-air intrusions into the interior of the Antarctic continent, since this influences precipitation seasonality and must be taken into account for a correct climatic interpretation of ice cores. Two case studies of extraordinary sea-ice concentration anomalies in relation to the prevailing atmospheric conditions are presented. However, both strong positive and negative anomalies can be related to warm biases in ice cores (indicated by stable-isotope ratios), especially in connection with the negative phase of the Southern Annular Mode.


2012 ◽  
Vol 6 (2) ◽  
pp. 931-956 ◽  
Author(s):  
C. L. Parkinson ◽  
D. J. Cavalieri

Abstract. In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.


1990 ◽  
Vol 14 ◽  
pp. 336
Author(s):  
Per Gloersen ◽  
William J. Campbell

Recently reported observations of a nine-year decrease in global sea-ice extent, obtained from the Scanning Multichannel Microwave Radiometer onboard the Nimbus-7 satellite during 1978–87 and averaged with an annual running mean, have been separated into Arctic and Antarctic components. The annually-averaged global extent decrease was 2.5%. Here it is shown that the greater part of this decrease occurred in the Arctic where there was a decline of 3.5% with a goodness of fit of 0.54. Superimposed on this decline was a small oscillation with a period of about four years and an amplitude of about 1%. A significantly smaller and statistically insignificant decrease of 1.2% with a goodness of fit of 0.03 is observed in the annually averaged Antarctic sea-ice extent. However, three large oscillations with amplitudes of about 4% and periods of about three years occurred in phase with three El Niño events.


2012 ◽  
Vol 6 (4) ◽  
pp. 871-880 ◽  
Author(s):  
C. L. Parkinson ◽  
D. J. Cavalieri

Abstract. In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has (like the Arctic) instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but the magnitudes of the two trends differ, and in some cases these differences allow inferences about the corresponding changes in sea ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.


2011 ◽  
Vol 52 (57) ◽  
pp. 347-354 ◽  
Author(s):  
Sharon B. Sneed ◽  
Paul A. Mayewski ◽  
Daniel A. Dixon

AbstractUsing results stemming from the International Trans-Antarctic Scientific Expedition (ITASE) ice-core array plus data from ice cores from the South Pole and Siple Dome we investigate the use of sodium (Na+), non-sea-salt sulfate (nssSO42–) and methylsulfonate (MS–) as proxies for Antarctic sea-ice extent (SIE). Maximum and mean annual chemistry concentrations for these three species correlate significantly with maximum, mean and minimum annual SIE, offering more information and clarification than single ice-core and single species approaches. Significant correlations greater than 90% exist between Na+ and maximum SIE; nssSO42– with minimum and mean SIE; and MS– with mean SIE. Correlations with SIE within large geographic regions are in the same direction for all ice-core sites for Na+ and nssSO42– but not MS–. All ice cores display an SIE correlation with nssSO42– and MS–, but not all correlate with Na+. This multi-core multi-parameter study provides the initial step in determining which chemical species can be used reliably and in which regions as a building block for embedding other ice-core records. Once established, the resulting temporal and spatial matrix can be used to relate ice extents, atmospheric patterns, biological productivity and site conditions.


2017 ◽  
Vol 30 (6) ◽  
pp. 2251-2267 ◽  
Author(s):  
Josefino C. Comiso ◽  
Robert A. Gersten ◽  
Larry V. Stock ◽  
John Turner ◽  
Gay J. Perez ◽  
...  

Abstract The Antarctic sea ice extent has been slowly increasing contrary to expected trends due to global warming and results from coupled climate models. After a record high extent in 2012 the extent was even higher in 2014 when the magnitude exceeded 20 × 106 km2 for the first time during the satellite era. The positive trend is confirmed with newly reprocessed sea ice data that addressed inconsistency issues in the time series. The variability in sea ice extent and ice area was studied alongside surface ice temperature for the 34-yr period starting in 1981, and the results of the analysis show a strong correlation of −0.94 during the growth season and −0.86 during the melt season. The correlation coefficients are even stronger with a one-month lag in surface temperature at −0.96 during the growth season and −0.98 during the melt season, suggesting that the trend in sea ice cover is strongly influenced by the trend in surface temperature. The correlation with atmospheric circulation as represented by the southern annular mode (SAM) index appears to be relatively weak. A case study comparing the record high in 2014 with a relatively low ice extent in 2015 also shows strong sensitivity to changes in surface temperature. The results suggest that the positive trend is a consequence of the spatial variability of global trends in surface temperature and that the ability of current climate models to forecast sea ice trend can be improved through better performance in reproducing observed surface temperatures in the Antarctic region.


2016 ◽  
Vol 29 (2) ◽  
pp. 721-741 ◽  
Author(s):  
Tsubasa Kohyama ◽  
Dennis L. Hartmann

Abstract The relationship between climate modes and Antarctic sea ice is explored by separating the variability into intraseasonal, interannual, and decadal time scales. Cross-spectral analysis shows that geopotential height and Antarctic sea ice extent are most coherent at periods between about 20 and 40 days (the intraseasonal time scale). In this period range, where the atmospheric circulation and the sea ice extent are most tightly coupled, sea ice variability responds strongly to Rossby waves with the structure of the Pacific–South American (PSA) pattern. The PSA pattern in this time scale is not directly related to El Niño–Southern Oscillation (ENSO) or the southern annular mode (SAM), which have received much attention for explaining Antarctic sea ice variability. On the interannual time scale, ENSO and SAM are important, but a large fraction of sea ice variance can also be explained by Rossby wave–like structures in the Drake Passage region. After regressing out the sea ice extent variability associated with ENSO, the observed positive sea ice trends in Ross Sea and Indian Ocean during the satellite era become statistically insignificant. Regressing out SAM makes the sea ice trend in the Indian Ocean insignificant. Thus, the positive trends in sea ice in the Ross Sea and the Indian Ocean sectors may be explained by the variability and decadal trends of known interannual climate modes.


Sign in / Sign up

Export Citation Format

Share Document