scholarly journals Simulating the Antarctic ice sheet in the Late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

2014 ◽  
Vol 8 (6) ◽  
pp. 5539-5588 ◽  
Author(s):  
B. de Boer ◽  
A. M. Dolan ◽  
J. Bernales ◽  
E. Gasson ◽  
H. Goelzer ◽  
...  

Abstract. In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The Late-Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of four sensitivity experiments. Ice-sheet model forcing fields are taken from the HadCM3 atmosphere–ocean climate model runs for the pre-industrial and the Pliocene. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, although the models are setup with their own parameter settings. For the Pliocene simulations using the Bedmap1 bedrock topography, some models show a small retreat of the East Antarctic ice sheet, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. This can be ascribed to either the surface mass balance, as the HadCM3 Pliocene climate shows a significant increase over the Wilkes and Aurora basin, or the initial bedrock topography. For the latter, our simulations with the recently published Bedmap2 bedrock topography indicate a significantly larger contribution to Pliocene sea-level rise from the East Antarctic ice sheet for all six models relative to the simulations with Bedmap1.

2015 ◽  
Vol 9 (3) ◽  
pp. 881-903 ◽  
Author(s):  
B. de Boer ◽  
A. M. Dolan ◽  
J. Bernales ◽  
E. Gasson ◽  
H. Goelzer ◽  
...  

Abstract. In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The late Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of five sensitivity experiments. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, considering the models are set up with their own parameter settings. For the Pliocene, the results demonstrate the difficulty of all six models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. The specific sea-level contribution of the Antarctic ice sheet at this point cannot be conclusively determined, whereas improved grounding line physics could be essential for a correct representation of the migration of the grounding-line of the Antarctic ice sheet during the Pliocene.


2021 ◽  
Vol 15 (2) ◽  
pp. 1031-1052
Author(s):  
Aurélien Quiquet ◽  
Christophe Dumas

Abstract. The Antarctic ice sheet's contribution to global sea level rise over the 21st century is of primary societal importance and remains largely uncertain as of yet. In particular, in the recent literature, the contribution of the Antarctic ice sheet by 2100 can be negative (sea level fall) by a few centimetres or positive (sea level rise), with some estimates above 1 m. The Ice Sheet Model Intercomparison Project for the Coupled Model Intercomparison Project – phase 6 (ISMIP6) aimed at reducing the uncertainties in the fate of the ice sheets in the future by gathering various ice sheet models in a common framework. Here, we present the GRISLI-LSCE (Grenoble Ice Sheet and Land Ice model of the Laboratoire des Sciences du Climat et de l'Environnement) contribution to ISMIP6-Antarctica. We show that our model is strongly sensitive to the climate forcing used, with a contribution of the Antarctic ice sheet to global sea level rise by 2100 that ranges from −50 to +150 mm sea level equivalent (SLE). Future oceanic warming leads to a decrease in thickness of the ice shelves, resulting in grounding-line retreat, while increased surface mass balance partially mitigates or even overcompensates the dynamic ice sheet contribution to global sea level rise. Most of the ice sheet changes over the next century are dampened under low-greenhouse-gas-emission scenarios. Uncertainties related to sub-ice-shelf melt rates induce large differences in simulated grounding-line retreat, confirming the importance of this process and its representation in ice sheet models for projections of the Antarctic ice sheet's evolution.


2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

<p>Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.</p>


1979 ◽  
Vol 24 (90) ◽  
pp. 213-230 ◽  
Author(s):  
Craig S. Lingle ◽  
James A. Clark

AbstractThe Antarctic ice sheet has been reconstructed at 18000 years b.p. by Hughes and others (in press) using an ice-flow model. The volume of the portion of this reconstruction which contributed to a rise of post-glacial eustatic sea-level has been calculated and found to be (9.8±1.5) × 106 km3. This volume is equivalent to 25±4 m of eustatic sea-level rise, defined as the volume of water added to the ocean divided by ocean area. The total volume of the reconstructed Antarctic ice sheet was found to be (37±6) × 106 km3. If the results of Hughes and others are correct, Antarctica was the second largest contributor to post-glacial eustatic sea-level rise after the Laurentide ice sheet. The Farrell and Clark (1976) model for computation of the relative sea-level changes caused by changes in ice and water loading on a visco-elastic Earth has been applied to the ice-sheet reconstruction, and the results have been combined with the changes in relative sea-level caused by Northern Hemisphere deglaciation as previously calculated by Clark and others (1978). Three families of curves have been compiled, showing calculated relative sea-level change at different times near the margin of the possibly unstable West Antarctic ice sheet in the Ross Sea, Pine Island Bay, and the Weddell Sea. The curves suggest that the West Antarctic ice sheet remained grounded to the edge of the continental shelf until c. 13000 years b.p., when the rate of sea-level rise due to northern ice disintegration became sufficient to dominate emergence near the margin predicted otherwise to have been caused by shrinkage of the Antarctic ice mass. In addition, the curves suggest that falling relative sea-levels played a significant role in slowing and, perhaps, reversing retreat when grounding lines approached their present positions in the Ross and Weddell Seas. A predicted fall of relative sea-level beneath the central Ross Ice Shelf of as much as 23 m during the past 2000 years is found to be compatible with recent field evidence that the ice shelf is thickening in the south-east quadrant.


2012 ◽  
Vol 5 (4) ◽  
pp. 963-974 ◽  
Author(s):  
A. M. Dolan ◽  
S. J. Koenig ◽  
D. J. Hill ◽  
A. M. Haywood ◽  
R. M. DeConto

Abstract. During the mid-Pliocene warm period (3.264 to 3.025 million years ago), global mean temperature was similar to that predicted for the next century and atmospheric carbon dioxide concentrations were slightly higher than today. Sea level was also higher than today, implying a reduction in the extent of the ice sheets. Thus, the mid-Pliocene warm period (mPWP) provides a unique testing ground to investigate the stability of the Earth's ice sheets and their contribution to sea level in a warmer-than-modern world. Climate models and ice sheet models can be used to enhance our understanding of ice sheet stability; however, uncertainties associated with different ice-sheet modelling frameworks mean that a rigorous comparison of numerical ice sheet model simulations for the Pliocene is essential. As an extension to the Pliocene Model Intercomparison Project (PlioMIP; Haywood et al., 2010, 2011a), the Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) will provide the first assessment as to the ice sheet model dependency of ice sheet predictions for the mPWP. Here we outline the PLISMIP experimental design and initialisation conditions that have been adopted to simulate the Greenland and Antarctic ice sheets under present-day and warm mid-Pliocene conditions. Not only will this project provide a new benchmark in the simulation of ice sheets in a past warm period, but the analysis of model sensitivity to various uncertainties could directly inform future predictions of ice sheet and sea level change.


1997 ◽  
Vol 25 ◽  
pp. 137-144 ◽  
Author(s):  
Siobhan P. O’Farrell ◽  
John L. McGregor ◽  
Leon D. Rotstayn ◽  
William F. Budd ◽  
Christopher Zweck ◽  
...  

The response of the Antarctic ice sheet to climate change over the next 500 years is calculated using the output of a transient-coupled ocean-atmosphere simulation assuming the atmospheric CO2value increases up to three times present levels. The main effects on the ice sheet on this time-scale include increasing rates of accumulation, minimal surface melting, and basal melting of ice shelves. A semi-Lagrangian transport scheme for moisture was used to improve the model’s ability to represent realistic rates of accumulation under present-day conditions, and thereby increase confidence in the anomalies calculated under a warmer climate. The response of the Antarctic ice sheet to the warming is increased accumulation inland, offset by loss from basal melting from the floating ice, and increased ice flow near the grounding line. The preliminary results of this study show that the change to the ice-sheet balance for the transient-coupled model forcing amounted to a minimal sea-level contribution in the next century, but a net positive sea-level rise of 0.21 m by 500 years. This new result supercedes earlier results that showed the Antarctic ice sheet made a net negative contribution to sea-level rise over the next century. However, the amplitude of the sea-level rise is still dominated In the much larger contributions expected from thermal expansion of the ocean of 0.25 m for 100 years and 1.00 m for 500 years.


2015 ◽  
Vol 1 (8) ◽  
pp. e1500589 ◽  
Author(s):  
Ricarda Winkelmann ◽  
Anders Levermann ◽  
Andy Ridgwell ◽  
Ken Caldeira

The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.


2020 ◽  
Author(s):  
Thomas Kleiner ◽  
Jeremie Schmiedel ◽  
Angelika Humbert

<p>Ice sheets constitute the largest and most uncertain potential source of future sea-level rise. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) brings together a consortium of international ice sheet and climate models to explore the contribution from the Greenland and Antarctic ice sheets to future sea-level rise.</p> <p>We use the Parallel Ice Sheet Model (PISM, pism-docs.org) to carry out spinup and projection simulations for the Antarctic Ice Sheet. Our treatment of the ice-ocean boundary condition previously based on 3D ocean temperatures (initMIP-Antarctica) has been adopted to use the ISMIP6 parameterisation and 3D ocean forcing fields (temperature and salinity) according to the ISMIP6 protocol.</p> <p>In this study, we analyse the impact of the choices made during the model initialisation procedure on the initial state. We present the AWI PISM results of the ISMIP6 projection simulations and investigate the ice sheet response for individual basins. In the analysis, we distinguish between the local and non-local ice shelf basal melt parameterisation.</p>


2021 ◽  
Author(s):  
◽  
Georgia Grant

<p>The mid- to late Pliocene (3.3-2.6 Ma) spans one of the most significant climatic transitions of the Cenozoic. It is characterised by global cooling from a climate with an atmospheric CO2 concentration of ~400 ppm and temperatures of 2-3°C warmer-than-present, to one marked by the progressive expansion of ice sheets on northern hemisphere. Consequently, the mid-Pliocene warm period (MPWP; 3.3-3.0 Ma) provides the most accessible and recent geological analogue for global sea-level variability relevant to future warming. Global mean sea level has been estimated at 22 ± 10 m above present-day for MPWP. However, recent re-evaluations of this estimate suggest that spatially-varying visco-elastic responses of the crust, local gravitational changes and dynamic topography from mantle processes may preclude ever being able to reconstruct peak Pliocene mean sea level. The Whanganui Basin, New Zealand, contains a ~5 km thick stratigraphic succession of Pliocene-Pleistocene (last 5 Ma), shallow-marine, cyclical sedimentary sequences demonstrated to record orbitally-paced, glacial-interglacial global sea-level fluctuations. A limitation of the Whanganui sea level record, to date, has been an inability to resolve the full amplitude of glacial-interglacial water depth change due to the occurrence of cycle bounding unconformities representing sub-aerial erosion during glacial lowstands.  This thesis analyses a new ~900 m-thick, mid- (3.3-3.0 Ma) to late Pliocene (3.0-2.6 Ma), shallow-marine, cyclical sedimentary succession from a remote and relatively understudied part of Whanganui Basin. Unlike previous studies, these shelf sediments were continuously deposited, and were not eroded during sea-level lowstands, and thus provide the potential to reconstruct the full amplitude of glacial-interglacial sea-level change. On orbital timescales the influence of mantle dynamic processes is minimal. The approach taken applies lithofacies, sequence stratigraphy, and benthic foraminiferal analyses and a novel depth-dependent sediment grain size method to reconstruct the paleowater depths for, two continuously-cored drill holes, which are integrated with studies of outcropping sections. The thesis presents a new record of the amplitude and frequency of orbitally-paced, global sea-level changes from a wave-graded continental shelf, that is independent of the benthic δ¹⁸O proxy record of global ice-volume change.  Paleobathymetric interpretations are underpinned by analysis of extant benthic foraminiferal census data and a statistical correlation with the distribution of modern taxa. In general, water depths derived from foraminiferal modern analogue technique are consistent with variability recorded by lithofacies. The inferred sea-level cycles co-vary with a qualitative climate record reconstructed from a census of extant pollen and spores, and a modern temperature relationship. A high-resolution age model is established using magnetostratigraphy constrained by biostratigraphy, and the dating and correlation of tephra. This integrated chronostratigraphy allows the recognition of 23 individual sedimentary cycles, that are correlated “one-to-one” across the paleo-shelf and are compared to the deep-ocean benthic oxygen isotope (δ ¹⁸O) record.  A grain size-water depth technique was developed to quantify the paleobathymetry with more precision than the relatively insensitive benthic foraminifera approach. The method utilises a water depth threshold relationship between wave-induced near bed velocity and the velocity required to transport sand. The resulting paleobathymetric records of the most sensitive sites, the mid-Pliocene Siberia-1 drill core and the late Pliocene Rangitikei River section, were selected to compile a composite paleobathymetry. A one-dimensional backstripping method was then applied to remove the effects of tectonic subsidence, sediment and water loading on the record, to derive a relative sea level (RSL) curve.  The contribution of glacio-hydro-isostatic (GIA) processes to the RSL record was evaluated using a process-based forward numerical solid Earth model for a range of plausible meltwater scenarios. The Whanganui Basin RSL record approximates eustatic sea level (ESL) in all scenarios when variability is dominated by Antarctic Ice Sheet meltwater source during the mid-Pliocene, but overestimates ESL once Northern Hemisphere ice sheet variability dominates in the late Pliocene.  The RSL record displays 20 kyr precession-paced sea level variability during the MPWP with an average amplitude of ~15 ± 8 m, in-phase with southern high-latitude summer insolation. These are interpreted as ~20 m Antarctic Ice Sheet contributions, offset by ~ 5 m anti-phased Greenland Ice Sheet contribution, in the absence of a significant Northern Hemisphere ice sheets. This interpretation is supported by a previously published ice-proximal precession-paced, ice-berg-rafted debris record recovered off the coast of Wilkes Land. The Whanganui RSL record is not consistent with a dominant 40 kyr pacing observed the benthic oxygen isotope stack at this time. While the deep ocean benthic δ¹⁸O stack is of varying temporal and spatial resolution, during this time interval, the Whanganui RSL record implies a more complex relationship between ice-volume and oxygen isotope composition of sea water (δ¹⁸Oseawater). The relative influences of varying composition of the polar ice sheets, marine versus land based ice, the out-of-phase behaviour of polar ice sheet growth and retreat, and a potential decoupling of ocean bottom water temperature and δ¹⁸Oseawater are explored.  The late Pliocene relative sea level record exhibits increasing ~40 kyr obliquity-paced amplitudes of ~20 ± 8 m. This is interpreted as a response to the expansion of Northern Hemisphere ice sheets after ~2.9 Ma. During this time the Antarctic proximal ice-berg rafted debris records display continuing precession-paced ice-volume fluctuations, but with decreasing amplitude suggesting cooling and stabilisation of the East Antarctic Ice Sheet. With the bipolar glaciation, the ocean δ¹⁸O signal became increasingly dominated by northern hemisphere ice-volume. However, the RSL record implies relatively limited ice-volume contributions (up to ~25 m sea level equivalent) prior to ~2.6 Ma.  The large amplitude contribution of Antarctic Ice Sheets to global sea level during the MPWP has significant implications for the sensitivity of the Antarctica Ice Sheet to global temperatures 2-3°C above preindustrial levels, and atmospheric CO₂ forecast for the coming decades.</p>


2020 ◽  
Vol 11 (4) ◽  
pp. 953-976
Author(s):  
Jonas Van Breedam ◽  
Heiko Goelzer ◽  
Philippe Huybrechts

Abstract. The emphasis for informing policy makers on future sea-level rise has been on projections by the end of the 21st century. However, due to the long lifetime of atmospheric CO2, the thermal inertia of the climate system and the slow equilibration of the ice sheets, global sea level will continue to rise on a multi-millennial timescale even when anthropogenic CO2 emissions cease completely during the coming decades to centuries. Here we present global sea-level change projections due to the melting of land ice combined with steric sea effects during the next 10 000 years calculated in a fully interactive way with the Earth system model of intermediate complexity LOVECLIMv1.3. The greenhouse forcing is based on the Extended Concentration Pathways defined until 2300 CE with no carbon dioxide emissions thereafter, equivalent to a cumulative CO2 release of between 460 and 5300 GtC. We performed one additional experiment for the highest-forcing scenario with the inclusion of a methane emission feedback where methane is slowly released due to a strong increase in surface and oceanic temperatures. After 10 000 years, the sea-level change rate drops below 0.05 m per century and a semi-equilibrated state is reached. The Greenland ice sheet is found to nearly disappear for all forcing scenarios. The Antarctic ice sheet contributes only about 1.6 m to sea level for the lowest forcing scenario with a limited retreat of the grounding line in West Antarctica. For the higher-forcing scenarios, the marine basins of the East Antarctic Ice Sheet also become ice free, resulting in a sea-level rise of up to 27 m. The global mean sea-level change after 10 000 years ranges from 9.2 to more than 37 m. For the highest-forcing scenario, the model uncertainty does not exclude the complete melting of the Antarctic ice sheet during the next 10 000 years.


Sign in / Sign up

Export Citation Format

Share Document