scholarly journals Supplementary material to "Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure"

Author(s):  
Matthew D. K. Priestley ◽  
Jennifer L. Catto
2021 ◽  
Author(s):  
Matthew D. K. Priestley ◽  
Jennifer L. Catto

Abstract. Future changes in extratropical cyclones and the associated storm tracks are uncertain. Using the new CMIP6 models, we investigate changes to seasonal mean storm tracks and composite wind speeds at different levels of the troposphere for the winter and summer seasons in both the Northern (NH) and Southern Hemispheres (SH). Changes are assessed across four different climate scenarios. The seasonal mean storm tracks are predicted to shift polewards in the SH and also in the North Pacific, with an extension into Europe for the North Atlantic storm track. Overall, the number of cyclones will decrease by ~5 % by the end of the 21st century, although the number of extreme cyclones will increase by 4 % in NH winter. Cyclone wind speeds are projected to strengthen throughout the troposphere in the winter seasons and also summer in the SH, with a weakening projected in NH summer, although there are minimal changes in the maximum wind speed in the lower troposphere. Large amounts of this change can be associated with changes in the speed of cyclones in the future. Changes in wind speeds are concentrated in the warm sector of cyclones and the area of extreme winds may be up to 40 % larger by the end of the century. The largest changes are seen for the SSP5-85 scenario, although large amount of change can be mitigated by restricting warming to that seen in the SSP1-26 and 2-45 scenarios. Extreme cyclones show larger increases in wind speed and peak vorticity than the average strength cyclones, with the extreme cyclones showing a larger increase in wind speed in the warm sector.


2014 ◽  
Vol 71 (4) ◽  
pp. 1292-1304 ◽  
Author(s):  
Tomislava Vukicevic ◽  
Eric Uhlhorn ◽  
Paul Reasor ◽  
Bradley Klotz

Abstract In this study, a new multiscale intensity (MSI) metric for evaluating tropical cyclone (TC) intensity forecasts is presented. The metric consists of the resolvable and observable, low-wavenumber intensity represented by the sum of amplitudes of azimuthal wavenumbers 0 and 1 for wind speed within the TC vortex at the radius of maximum wind and a stochastic residual, all determined at 10-m elevation. The residual wind speed is defined as the difference between an estimate of maximum speed and the low-wavenumber intensity. The MSI metric is compared to the standard metric that includes only the maximum speed. Using stepped-frequency microwave radiometer wind speed observations from TC aircraft reconnaissance to estimate the low-wavenumber intensity and the National Hurricane Center’s best-track (BT) intensity for the maximum wind speed estimate, it is shown that the residual intensity is well represented as a stochastic quantity with small mean, standard deviation, and absolute norm values that are within the expected uncertainty of the BT estimates. The result strongly suggests that the practical predictability of TC intensity is determined by the observable and resolvable low-wavenumber intensity within the vortex. Verification of a set of high-resolution numerical forecasts using the MSI metric demonstrates that this metric provides more informative and more realistic estimates of the intensity forecast errors. It is also shown that the maximum speed metric allows for error compensation between the low-wavenumber and residual intensities, which could lead to forecast skill overestimation and inaccurate assessment of the impact of forecast system change on the skill.


2011 ◽  
Vol 26 (5) ◽  
pp. 690-698 ◽  
Author(s):  
Miguel F. Piñeros ◽  
Elizabeth A. Ritchie ◽  
J. Scott Tyo

Abstract This paper describes results from a near-real-time objective technique for estimating the intensity of tropical cyclones from satellite infrared imagery in the North Atlantic Ocean basin. The technique quantifies the level of organization or axisymmetry of the infrared cloud signature of a tropical cyclone as an indirect measurement of its maximum wind speed. The final maximum wind speed calculated by the technique is an independent estimate of tropical cyclone intensity. Seventy-eight tropical cyclones from the 2004–09 seasons are used both to train and to test independently the intensity estimation technique. Two independent tests are performed to test the ability of the technique to estimate tropical cyclone intensity accurately. The best results from these tests have a root-mean-square intensity error of between 13 and 15 kt (where 1 kt ≈ 0.5 m s−1) for the two test sets.


2021 ◽  
Author(s):  
Edgar Dolores-Tesillos ◽  
Franziska Teubler ◽  
Stephan Pfahl

Abstract. Strong low-level winds associated with extratropical cyclones can cause substantial impacts on society. The wind intensity and the spatial distribution of wind maxima may change in a warming climate; however, the involved changes in cyclone structure and dynamics are unclear. Here, such structural changes of strong North Atlantic cyclones in a warmer climate close to the end of the current century are investigated with storm-relative composites based on Community Earth System Model Large Ensemble (CESM-LENS) simulations. Furthermore, a piecewise potential vorticity inversion is applied to associate such changes in low-level winds to changes in potential vorticity (PV) anomalies at different levels. Projected changes in cyclone intensity are generally rather small. However, using cyclone-relative composites, we identify an extended wind footprint southeast of the center of strong cyclones, where the wind speed tends to intensify in a warmer climate. Both an amplified low-level PV anomaly driven by enhanced diabatic heating and a dipole change in upper-level PV anomalies contribute to this wind intensification. On the contrary, wind changes associated with lower- and upper-level PV anomalies mostly compensate each other upstream of the cyclone center. Wind changes at upper levels are dominated by changes in upper-level PV anomalies and the background flow. All together, our results indicate that a complex interaction of enhanced diabatic heating and altered non-linear upper-tropospheric wave dynamics shape future changes in near-surface winds in North Atlantic cyclones.


2011 ◽  
Vol 24 (20) ◽  
pp. 5336-5352 ◽  
Author(s):  
Jennifer L. Catto ◽  
Len C. Shaffrey ◽  
Kevin I. Hodges

Abstract Changes to the Northern Hemisphere winter (December–February) extratropical storm tracks and cyclones in a warming climate are investigated. Two idealized climate change experiments with the High Resolution Global Environmental Model version 1.1 (HiGEM1.1), a doubled CO2 and a quadrupled CO2 experiment, are compared against a present-day control run. An objective feature tracking method is used and a focus is given to regional changes. The climatology of extratropical storm tracks from the control run is shown to be in good agreement with the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), while the frequency distribution of cyclone intensity also compares well. In both simulations the mean climate changes are generally consistent with the simulations of the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) models, with strongly enhanced surface warming at the winter pole and reduced lower-tropospheric warming over the North Atlantic Ocean associated with the slowdown of the meridional overturning circulation. The circulation changes in the North Atlantic are different between the two idealized simulations with different CO2 forcings. In the North Atlantic the storm tracks are influenced by the slowdown of the MOC, the enhanced surface polar warming, and the enhanced upper tropical-troposphere warming, giving a northeastward shift of the storm tracks in the 2 × CO2 experiment but no shift in the 4 × CO2 experiment. Over the Pacific, in the 2 × CO2 experiment, changes in the mean climate are associated with local temperature changes, while in the 4 × CO2 experiment the changes in the Pacific are impacted by the weakened tropical circulation. The storm-track changes are consistent with the shifts in the zonal wind. Total cyclone numbers are found to decrease over the Northern Hemisphere with increasing CO2 forcing. Changes in cyclone intensity are found using 850-hPa vorticity, mean sea level pressure, and 850-hPa winds. The intensity of the Northern Hemisphere cyclones is found to decrease relative to the control.


2017 ◽  
Vol 34 (8) ◽  
pp. 1837-1851 ◽  
Author(s):  
Daniel J. Cecil ◽  
Sayak K. Biswas

AbstractSurface wind speed retrievals have been generated and evaluated using Hurricane Imaging Radiometer (HIRAD) measurements from flights over Hurricane Joaquin, Hurricane Patricia, Hurricane Marty, and the remnants of Tropical Storm Erika—all in 2015. Procedures are described here for producing maps of brightness temperature, which are subsequently used for retrievals of surface wind speed and rain rate across a ~50-km-wide swath for each flight leg. An iterative retrieval approach has been developed to take advantage of HIRAD’s measurement characteristics. Validation of the wind speed retrievals has been conducted, using 636 dropsondes released from the same WB-57 high-altitude aircraft carrying HIRAD during the Tropical Cyclone Intensity (TCI) experiment. The HIRAD wind speed retrievals exhibit very small bias relative to the dropsondes, for winds of tropical storm strength (17.5 m s−1) or greater. HIRAD has reduced sensitivity to winds weaker than tropical storm strength and a small positive bias (~2 m s−1). Two flights with predominantly weak winds according to the dropsondes have abnormally large errors from HIRAD and large positive biases. From the other flights, the root-mean-square differences between HIRAD and the dropsonde winds are 4.1 m s−1 (33%) for winds below tropical storm strength, 5.6 m s−1 (25%) for tropical storm–strength winds, and 6.3 m s−1 (16%) for hurricane-strength winds. The mean absolute differences for those three categories are 3.2 m s−1 (25%), 4.3 m s−1 (19%), and 4.8 m s−1 (12%), respectively, with a bias near zero for winds of tropical storm and hurricane strength.


2020 ◽  
Author(s):  
Christian Passow ◽  
Uwe Ulbrich ◽  
Henning Rust

<p>Scientific work on European windstorms mainly focused on local damages, location (tracks), temporal evolution or the overall severity, often measured by severity indices of different definitions. Each of the aforementioned windstorm properties is directly related to important characteristics within the windstorm itself, such as wind speed, duration, spatial extent or internal variablity. Variation or changes within these characteritics are therefore defining aspects in the spatial and temproal evolution of windstorm or their overall severity in general. As a step towards a better understanding of such variations, we intend to classify windstorms based on their characteristics. For this purpose, we categorize individual storms based on their characteristics using a K-Means clustering procedure. As a result, we get a catalog of more than 400 storm tracks, each track having properties similar to the 20 most severe storm events in the European region. In an attempt to better understand driving mechanisms behind severe European windstorms, the catalog will be further examined to find key parameters that determine the cluster characteristics, such as large-scale situations or the sequencing of clusters.</p>


Sign in / Sign up

Export Citation Format

Share Document