scholarly journals An analysis of offshore wind farm SCADA measurements to identify key parameters influencing the magnitude of wake effects

Author(s):  
Niko Mittelmeier ◽  
Julian Allin ◽  
Tomas Blodau ◽  
Davide Trabucchi ◽  
Gerald Steinfeld ◽  
...  

Abstract. Atmospheric conditions have a clear influence on wake effects. Stability classification is usually based on wind speed, turbulence intensity, shear and temperature gradients measured partly at met masts, buoys or LiDARs. The objective of this paper is to find a classification for stability based on wind turbine Supervisory Control and Data Acquisition (SCADA) measurements in order to fit engineering wake models better to the current ambient conditions. Two offshore wind farms with met masts have been used to establish a correlation between met mast stability classification and new aggregated artificial signals. The significance of these new signals on power production is demonstrated for two wind farms with met masts and measurements from a long range LiDAR and validated against data from one further wind farm without a met mast. We found a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity when the wind turbines were operating in partial load. The proposed signal is very sensitive to increased turbulence due to neighbouring turbines and wind farms even at a distance of more than 38 rotor diameters away. It allows to distinguish between conditions with different magnitude of wake effects.

2017 ◽  
Vol 2 (2) ◽  
pp. 477-490 ◽  
Author(s):  
Niko Mittelmeier ◽  
Julian Allin ◽  
Tomas Blodau ◽  
Davide Trabucchi ◽  
Gerald Steinfeld ◽  
...  

Abstract. For offshore wind farms, wake effects are among the largest sources of losses in energy production. At the same time, wake modelling is still associated with very high uncertainties. Therefore current research focusses on improving wake model predictions. It is known that atmospheric conditions, especially atmospheric stability, crucially influence the magnitude of those wake effects. The classification of atmospheric stability is usually based on measurements from met masts, buoys or lidar (light detection and ranging). In offshore conditions these measurements are expensive and scarce. However, every wind farm permanently produces SCADA (supervisory control and data acquisition) measurements. The objective of this study is to establish a classification for the magnitude of wake effects based on SCADA data. This delivers a basis to fit engineering wake models better to the ambient conditions in an offshore wind farm. The method is established with data from two offshore wind farms which each have a met mast nearby. A correlation is established between the stability classification from the met mast and signals within the SCADA data from the wind farm. The significance of these new signals on power production is demonstrated with data from two wind farms with met mast and long-range lidar measurements. Additionally, the method is validated with data from another wind farm without a met mast. The proposed signal consists of a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity (TI) when the wind turbines were operating in partial load. It allows us to distinguish between conditions with different magnitudes of wake effects. The proposed signal is very sensitive to increased turbulence induced by neighbouring turbines and wind farms, even at a distance of more than 38 rotor diameters.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 882 ◽  
Author(s):  
Hongyan Ding ◽  
Zuntao Feng ◽  
Puyang Zhang ◽  
Conghuan Le ◽  
Yaohua Guo

The composite bucket foundation (CBF) for offshore wind turbines is the basis for a one-step integrated transportation and installation technique, which can be adapted to the construction and development needs of offshore wind farms due to its special structural form. To transport and install bucket foundations together with the upper portion of offshore wind turbines, a non-self-propelled integrated transportation and installation vessel was designed. In this paper, as the first stage of applying the proposed one-step integrated construction technique, the floating behavior during the transportation of CBF with a wind turbine tower for the Xiangshui wind farm in the Jiangsu province was monitored. The influences of speed, wave height, and wind on the floating behavior of the structure were studied. The results show that the roll and pitch angles remain close to level during the process of lifting and towing the wind turbine structure. In addition, the safety of the aircushion structure of the CBF was verified by analyzing the measurement results for the interaction force and the depth of the liquid within the bucket. The results of the three-DOF (degree of freedom) acceleration monitoring on the top of the test tower indicate that the wind turbine could meet the specified acceleration value limits during towing.


Author(s):  
Paul Sclavounos ◽  
Christopher Tracy ◽  
Sungho Lee

Wind is the fastest growing renewable energy source, increasing at an annual rate of 25% with a worldwide installed capacity of 74 GW in 2007. The vast majority of wind power is generated from onshore wind farms. Their growth is however limited by the lack of inexpensive land near major population centers and the visual pollution caused by large wind turbines. Wind energy generated from offshore wind farms is the next frontier. Large sea areas with stronger and steadier winds are available for wind farm development and 5MW wind turbine towers located 20 miles from the coastline are invisible. Current offshore wind turbines are supported by monopoles driven into the seafloor at coastal sites a few miles from shore and in water depths of 10–15m. The primary impediment to their growth is visual pollution and the prohibitive cost of seafloor mounted monopoles in larger water depths. This paper presents a fully coupled dynamic analysis of floating wind turbines that enables a parametric design study of floating wind turbine concepts and mooring systems. Pareto optimal designs are presented that possess a favorable combination of nacelle acceleration, mooring system tension and displacement of the floating structure supporting a five megawatt wind turbine. All concepts are selected so that they float stably while in tow to the offshore wind farm site and prior to their connection to the mooring system. A fully coupled dynamic analysis is carried out of the wind turbine, floater and mooring system in wind and a sea state based on standard computer programs used by the offshore and wind industries. The results of the parametric study are designs that show Pareto fronts for mean square acceleration of the turbine versus key cost drivers for the offshore structure that include the weight of the floating structure and the static plus dynamic mooring line tension. Pareto optimal structures are generally either a narrow deep drafted spar, or a shallow drafted barge ballasted with concrete. The mooring systems include both tension leg and catenary mooring systems. In some of the designs, the RMS acceleration of the wind turbine nacelle can be as low as 0.03 g in a sea state with a significant wave height of ten meters and water depths of up to 200 meters. These structures meet design requirements while possessing a favorable combination of nacelle accleration, total mooring system tension and weight of the floating structure. Their economic assessment is also discussed drawing upon a recent financial analysis of a proposed offshore wind farm.


Author(s):  
Naima Charhouni ◽  
Mohammed Sallaou ◽  
Khalifa Mansouri

Wind farm deficiency caused by wake turbine interactions has received an important attention by scientific researchers in recent years. However the quality of power production is strongly depends on wind turbines location from others. In this regard, this paper proposes a comprehensive design analysis of crucial concepts that aid to plan for an efficient wind farm design. Indeed, the wake modeling problem is addressed in this analysis by comparing three models with available measured data gotten from literature. A configuration of wind turbines placement within the offshore wind farm as a function of separation distance is investigated in this study considering four wind farms layout. In addition to these elements, four rotor diameters size are evaluated as critical concept for wind turbine selection and production .The results obtained demonstrate that it is complicated to make a balance between three conflicted objectives related to the power production, efficiency and surface land area required for wind farm as a function of these crucial concepts.


2016 ◽  
Vol 33 (3) ◽  
pp. 481-501 ◽  
Author(s):  
Niranjan S. Ghaisas ◽  
Cristina L. Archer

AbstractLayout studies are critical in designing large wind farms, since wake effects can lead to significant reductions in power generation. Optimizing wind farm layout using computational fluid dynamics is practically unfeasible today because of their enormous computational requirements. Simple statistical models, based on geometric quantities associated with the wind farm layout, are therefore attractive because they are less demanding computationally. Results of large-eddy simulations of the Lillgrund (Sweden) offshore wind farm are used here to calibrate such geometry-based models. Several geometric quantities (e.g., blockage ratio, defined as the fraction of the swept area of a wind turbine that is blocked by upstream turbines) and their linear combinations are found to correlate very well (correlation coefficient of ~0.95) with the power generated by the turbines. Linear models based on these geometric quantities are accurate at predicting the farm-averaged power and are therefore used here to study layout effects in large wind farms. The layout parameters that are considered include angle between rows and columns, angle between incoming wind and columns (orientation), turbine spacings, and staggering of alternate rows. Each can impact wind power production positively or negatively, and their interplay is complex. The orientation angle is the most critical parameter influencing wake losses, as small changes in it can cause sharp variations in power. In general, for a prevailing wind direction, the orientation angle should be small (7.5°–20°) but not zero; staggering and spacing are beneficial; and nonorthogonal layouts may outperform orthogonal ones. This study demonstrates the utility of simple, inexpensive, and reasonably accurate geometry-based models to identify general principles governing optimal wind farm layout.


Author(s):  
Spencer T. Hallowell ◽  
Sanjay R. Arwade ◽  
Brian D. Diaz ◽  
Charles P. Aubeny ◽  
Casey M. Fontana ◽  
...  

Abstract One of many barriers to the deployment of floating offshore wind turbines is the high cost of vessel time needed for soil investigations and anchor installation. A multiline anchor system is proposed in which multiple floating offshore wind turbines (FOWTs) are connected to a single caisson. The connection of multiple FOWTs to a single anchor introduces interconnectedness throughout the wind farm. Previous work by the authors has shown that this interconnectedness reduces the reliability of the FOWT below an acceptable level when exposed to survival loading conditions. To combat the reduction in system reliability an overstrength factor (OSF) is applied to the anchors functioning as an additional safety factor. For a 100 turbine wind farm, single-line system reliabilities can be achieved using the multiline system with an OSF of 1.10, a 10% increase in multiline anchor safety factors for all anchors in a farm.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 556
Author(s):  
Siyu Tao ◽  
Andrés Feijóo ◽  
Jiemin Zhou ◽  
Gang Zheng

The advances in the manufacturing industry make it possible to install wind turbines (WTs) with large capacities in offshore wind farms (OWFs) in deep water areas far away from the coast where there are the best wind resources. This paper proposes a novel method for OWF optimal planning in deep water areas with a circular boundary. A three-dimensional model of the planning area’s seabed is established in a cylindrical coordinate. Two kinds of WTs with capacities of 4 and 8 MW respectively are supposed to be mixed-installed in that area. Baseline cases are analyzed and compared to verify the superiority of a circular layout pattern and the necessity of a non-uniform installation. Based on the establishment of the optimization model and a realistic wind condition, a novel heuristic algorithm, i.e., the whale optimization algorithm (WOA), is applied to solve the problem to obtain the type selection and coordinates of WTs simultaneously. Finally, the feasibility and advantages of the proposed scheme are identified and discussed according to the simulation results.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3457
Author(s):  
Robin Brabant ◽  
Yves Laurent ◽  
Bob Jonge Poerink ◽  
Steven Degraer

Bats undertaking seasonal migration between summer roosts and wintering areas can cross large areas of open sea. Given the known impact of onshore wind turbines on bats, concerns were raised on whether offshore wind farms pose risks to bats. Better comprehension of the phenology and weather conditions of offshore bat migration are considered as research priorities for bat conservation and provide a scientific basis for mitigating the impact of offshore wind turbines on bats. This study investigated the weather conditions linked to the migratory activity of Pipistrellus bats at multiple near- and offshore locations in the Belgian part of the North Sea. We found a positive relationship between migratory activity and ambient temperature and atmospheric pressure and a negative relationship with wind speed. The activity was highest with a wind direction between NE and SE, which may favor offshore migration towards the UK. Further, we found a clear negative relationship between the number of detections and the distance from the coast. At the nearshore survey location, the number of detections was up to 24 times higher compared to the offshore locations. Our results can support mitigation strategies to reduce offshore wind farm effects on bats and offer guidance in the siting process of new offshore wind farms.


2021 ◽  
Vol 6 (6) ◽  
pp. 1455-1472
Author(s):  
Vasilis Pettas ◽  
Matthias Kretschmer ◽  
Andrew Clifton ◽  
Po Wen Cheng

Abstract. The energy transition means that more and more wind farms are being built in favorable offshore sites like the North Sea. The wind farms affect each other as they interact with the boundary layer flow. This phenomenon is a topic of current research by the industry and academia as it can have significant technical and financial impacts. In the present study, we use data from the Alpha Ventus wind farm site to investigate the effects of inter-farm interactions. Alpha Ventus is the first offshore German wind farm located in the North Sea with a fully equipped measurement platform, FINO1, in the near vicinity. We look at the effects on the wind conditions measured at FINO1 before and after the beginning of operation of the neighboring farms. We show how measured quantities like turbulence intensity, wind speed distributions, and wind shear are evolving from the period when the park was operating alone in the area to the period when farms were built and operate in close proximity (1.4–15 km). Moreover, we show how the wind turbine's response in terms of loads and generator and pitch activity is affected using data from a turbine that is in the vicinity of the mast. The results show the wake effects in the directions influenced by the wind farms according to their distance with increased turbulence intensity, reduced wind speeds, and increased structural loading.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8000
Author(s):  
Abel Arredondo-Galeana ◽  
Feargal Brennan

The offshore wind sector is expanding to deep water locations through floating platforms. This poses challenges to horizontal axis wind turbines (HAWTs) due to the ever growing size of blades and floating support structures. As such, maintaining the structural integrity and reducing the levelised cost of energy (LCoE) of floating HAWTs seems increasingly difficult. An alternative to these challenges could be found in floating offshore vertical axis wind turbines (VAWTs). It is known that VAWTs have certain advantages over HAWTs, and in fact, some small-scale developers have successfully commercialised their onshore prototypes. In contrast, it remains unknown whether VAWTs can offer an advantage for deep water floating offshore wind farms. Therefore, here we present a multi-criteria review of different aspects of VAWTs to address this question. It is found that wind farm power density and reliability could be decisive factors to make VAWTs a feasible alternative for deep water floating arrays. Finally, we propose a way forward based on the findings of this review.


Sign in / Sign up

Export Citation Format

Share Document