scholarly journals Modelling tower fatigue loads of a wind turbine using data mining techniques on SCADA data

2020 ◽  
Author(s):  
Artur Movsessian ◽  
Marcel Schedat ◽  
Torsten Faber

Abstract. The rapid development of the wind industry in recent decades and the establishment of this technology as a mature and cost-competitive alternative have stressed the need for sophisticated maintenance and monitoring methods. Structural health monitoring has risen as a diagnosis strategy to detect damage or failures in wind turbine structures with the help of measuring sensors. The amount of data recorded by the structural health monitoring system can potentially be used to obtain knowledge about the condition and remaining lifetime of wind turbines. Machine learning techniques provide the opportunity to extract this information, thereby improving the reliability and cost-effectiveness of the wind industry as well. This paper demonstrates modeling damage equivalent loads of the fore-aft bending moments of a wind turbine tower with the advantage of using the neighborhood component analysis as a feature selection technique in comparison to common dimension reduction/feature selection techniques such as correlation analysis, stepwise regression or principal component analysis. For this study a one-year measuring period of data was gathered, pre-processed, and filtered by different operational modes, namely stand still, full load, and partial load. Finally, a sensitivity analysis was performed in the partial load model to determine the required length of the data collection campaign that guarantees the most precise results. The results indicate that applying neighborhood component analysis yields more conservative models regarding the number of features and equally accurate outcomes than traditional feature selection techniques.

2021 ◽  
Vol 6 (2) ◽  
pp. 539-554
Author(s):  
Artur Movsessian ◽  
Marcel Schedat ◽  
Torsten Faber

Abstract. The rapid development of the wind industry in recent decades and the establishment of this technology as a mature and cost-competitive alternative have stressed the need for sophisticated maintenance and monitoring methods. Structural health monitoring has risen as a diagnosis strategy to detect damage or failures in wind turbine structures with the help of measuring sensors. The amount of data recorded by the structural health monitoring system can potentially be used to obtain knowledge about the condition and remaining lifetime of wind turbines. Machine learning techniques provide the opportunity to extract this information, thereby improving the reliability and cost-effectiveness of the wind industry as well. This paper demonstrates the modelling of damage-equivalent loads of the fore–aft bending moments of a wind turbine tower, highlighting the advantage of using the neighbourhood component analysis. This feature selection technique is compared to common dimension reduction/feature selection techniques such as correlation analysis, stepwise regression, or principal component analysis. For this study, recordings of data were gathered during approximately 11 months, preprocessed, and filtered by different operational modes, namely standstill, partial load, and full load. The results indicate that all feature selection techniques were able to maintain high accuracy when trained with artificial neural networks. The neighbourhood component analysis yields the lowest number of features required while maintaining the interpretability with an absolute mean squared error of around 0.07 % for full load. Finally, the applicability of the resulting model for predicting loads in the wind turbine is tested by reducing the amount of data used for training by 50 %. This analysis shows that the predictive model can be used for continuous monitoring of loads in the tower of the wind turbine.


2013 ◽  
Vol 558 ◽  
pp. 364-373 ◽  
Author(s):  
Stuart G. Taylor ◽  
Kevin M. Farinholt ◽  
Gyu Hae Park ◽  
Charles R. Farrar ◽  
Michael D. Todd ◽  
...  

This paper presents ongoing work by the authors to implement real-time structural health monitoring (SHM) systems for operational research-scale wind turbine blades. The authors have been investigating and assessing the performance of several techniques for SHM of wind turbine blades using piezoelectric active sensors. Following a series of laboratory vibration and fatigue tests, these techniques are being implemented using embedded systems developed by the authors. These embedded systems are being deployed on operating wind turbine platforms, including a 20-meter rotor diameter turbine, located in Bushland, TX, and a 4.5-meter rotor diameter turbine, located in Los Alamos, NM. The SHM approach includes measurements over multiple frequency ranges, in which diffuse ultrasonic waves are excited and recorded using an active sensing system, and the blades global ambient vibration response is recorded using a passive sensing system. These dual measurement types provide a means of correlating the effect of potential damage to changes in the global structural behavior of the blade. In order to provide a backdrop for the sensors and systems currently installed in the field, recent damage detection results for laboratory-based wind turbine blade experiments are reviewed. Our recent and ongoing experimental platforms for field tests are described, and experimental results from these field tests are presented. LA-UR-12-24691.


2021 ◽  
Vol 263 (2) ◽  
pp. 4079-4087
Author(s):  
Murat Inalpolat ◽  
Caleb Traylor

Noise generated by turbulent boundary layer over the trailing edge of a wind turbine blade under various flow conditions is predicted and analyzed for structural health monitoring purposes. Wind turbine blade monitoring presents a challenge to wind farm operators, and an in-blade structural health monitoring system would significantly reduce O&M costs. Previous studies into structural health monitoring of blades have demonstrated the feasibility of designing a passive detection system based on monitoring the flow-generated acoustic spectra. A beneficial next step is identifying the robustness of such a system to wind turbine blades under different flow conditions. To examine this, a range of free stream air velocities from 5 m/s to 20 m/s and a range of rotor speeds from 5 rpm to 20 rpm are used in a reduced-order model of the flow-generated sound in the trailing edge turbulent boundary layer. The equivalent lumped acoustics sources are predicted based on the turbulent flow simulations, and acoustic spectra are calculated using acoustic ray tracing. Each case is evaluated based on the changes detected when damage is present. These results can be used to identify wind farms that would most benefit from this monitoring system to increase efficiency in deployment of turbines.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4312 ◽  
Author(s):  
Yunzhu Chen ◽  
Xingwei Xue

With the rapid development of the world’s transportation infrastructure, many long-span bridges were constructed in recent years, especially in China. However, these bridges are easily subjected to various damages due to dynamic loads (such as wind-, earthquake-, and vehicle-induced vibration) or environmental factors (such as corrosion). Therefore, structural health monitoring (SHM) is vital to guarantee the safety of bridges in their service lives. With its wide frequency response range, fast response, simple preparation process, ease of processing, low cost, and other advantages, the piezoelectric transducer is commonly employed for the SHM of bridges. This paper summarizes the application of piezoelectric materials for the SHM of bridges, including the monitoring of the concrete strength, bolt looseness, steel corrosion, and grouting density. For each problem, the application of piezoelectric materials in different research methods is described. The related data processing methods for four types of bridge detection are briefly summarized, and the principles of each method in practical application are listed. Finally, issues to be studied when using piezoelectric materials for monitoring are discussed, and future application prospects and development directions are presented.


2017 ◽  
Vol 17 (4) ◽  
pp. 815-822 ◽  
Author(s):  
Jochen Moll ◽  
Philip Arnold ◽  
Moritz Mälzer ◽  
Viktor Krozer ◽  
Dimitry Pozdniakov ◽  
...  

Structural health monitoring of wind turbine blades is challenging due to its large dimensions, as well as the complex and heterogeneous material system. In this article, we will introduce a radically new structural health monitoring approach that uses permanently installed radar sensors in the microwave and millimetre-wave frequency range for remote and in-service inspection of wind turbine blades. The radar sensor is placed at the tower of the wind turbine and irradiates the electromagnetic waves in the direction of the rotating blades. Experimental results for damage detection of complex structures will be presented in a laboratory environment for the case of a 10-mm-thick glass-fibre-reinforced plastic plate, as well as a real blade-tip sample.


Author(s):  
Kyle Bassett ◽  
Rupp Carriveau ◽  
David S.-K. Ting

Structural health monitoring is a technique devised to monitor the structural conditions of a system in an attempt to take corrective measures before the system fails. A passive structural health monitoring technique is presented, which serves to leverage historic time series data in order to both detect and localize damage on a wind turbine blade aerodynamic model. First, vibration signals from the healthy system are recorded for various input conditions. The data is normalized and auto-regressive (AR) coefficients are determined in order to uniquely identify the normal behavior of the system for each input condition. This data is then stored in a healthy state database. When the structural condition of the system is unknown the vibration signals are acquired, normalized and identified by their AR coefficients. Damage is detected through the residual error which is calculated as the difference between the AR coefficients of the unknown and healthy structural conditions. This technique is tailored for wind turbines and the application of this approach is demonstrated in a wind tunnel using a small turbine blade held with four springs to create a dual degree-of-freedom system. The vibration signals from this system are characterized by free-stream speed. Damage is replicated through mass addition on each of the blades ends and is located by an increase in residual error from the accelerometer mounted closest to the damaged area. The outlined procedure and demonstration illustrate a single stage structural health monitoring technique that, when applied on a large scale, can avoid catastrophic turbine disasters and work to effectively reduce the maintenance costs and downtime of wind farm operations.


Wind Energy ◽  
2019 ◽  
Vol 22 (5) ◽  
pp. 698-711 ◽  
Author(s):  
Carlos Quiterio Gómez Muñoz ◽  
Fausto Pedro García Marquez ◽  
Borja Hernandez Crespo ◽  
Kena Makaya

Sign in / Sign up

Export Citation Format

Share Document