scholarly journals Investigation on Flexural Behaviour of Cold Formed Steel Latticed Built-Up I Section with Drop Web

2018 ◽  
Vol 7 (1) ◽  
pp. 65-68
Author(s):  
N. Nandhini . ◽  
K. Sudha .

This paper deals with the study of flexural behaviour of cold formed latticed built-up I beam with drop web for various sections by varying depth, thickness and span length of the section. The numerical analysis was carried out by FEM software ABAQUS 6.13[11]. The experimental works carried out by Cheng Yu and Benjamin W. Schafer (2006) [1] were taken for validating the numerical analysis procedure. It provides a cost effective way to explore the performance of products in a virtual environment. The ultimate capacity is obtained by performing both linear and non-linear analysis. Theoretical investigation as per AISI specification was carried out for all the specimens to check the accuracy of the design proposal. Numerical finite element procedure is used to instruct the effect of various parameters on behavior of beams. The critical load and different modes of failure are studied by this numerical investigation. Comparison between deformed shape and load vs. displacement curves of I section with drop web were presented.

2016 ◽  
Vol 858 ◽  
pp. 38-43
Author(s):  
Ng Ling Ying Adeline ◽  
Wei Hui Hii

The paper presents experimental investigations on cold-formed steel (CFS) wall plate system. The behavior and the modes of failure of the system under uplift were studied. The parameters tested were the presence of gaps and the thickness of connecting plates. Results showed that samples with and without gaps at the supports experienced the same failure mode. Failure began with the yielding of connecting plates followed by the buckling of C-channel. Similar ultimate capacity was also obtained for samples with and without gaps. When connecting plates of different thicknesses were used to connect the wall-plate, different modes of failure were observed. Instead of yielding in the connecting plates, screw pull-out was observed in the connection before the C-channel buckled. Besides, it was observed that the ultimate capacity of the system was reduced when thicker connecting plates were used. It is not conservative to estimate the capacity of screwed connection according to the design standard and it is proposed that the capacity of the wall plate system is taken as the yield capacity of the connecting plates of the same material properties.


2011 ◽  
Vol 267 ◽  
pp. 297-301
Author(s):  
Yong Wang ◽  
Guo Niu Zhu ◽  
Bo Yu Sun

The paper is concerned with topology optimization in the mechanical design process. The disadvantage of current process of mechanical design is discussed and a new design process based on structural topology optimization is presented. The design process with structural topology optimization in mechanical design is discussed by the example of the frame of a bender. Static analysis is made to the original model first according to the whole structure and working characteristic of the machine, the stress and deformation distribution are obtained and then topology optimization is carried out. On the basis of topology optimization, the layout of the initial design proposal is obtained and the weight of the frame is substantially reduced while the performance enhanced. The application of the method demonstrates that through innovative utilization of the topology optimization techniques, the conceptual proposals can be obtained and the overall mechanical design process can be improved substantially in a cost effective manner.


2018 ◽  
Vol 65 ◽  
pp. 08010
Author(s):  
Je Chenn Gan ◽  
Jee Hock Lim ◽  
Siong Kang Lim ◽  
Horng Sheng Lin

Applications of Cold-Formed Steel (CFS) are widely used in buildings, machinery and etc. Many researchers began the research of CFS as a roof truss system. It is required to increase the knowledge of the configurations of CFS roof trusses due to the uncertainty of the structural failures regarding the materials and rigidity of joints. The objective of this research is to investigate the effect of heel plate length to the ultimate load capacity of CFS roof truss system. Three different lengths of heel plate specimens were fabricated and subjected to concentrated loads until failure. The highest ultimate capacity for the experiment was 30 kN. The results showed that the increment of the length of the heel plate had slightly increased the ultimate capacity and strain. The increment of the length of the heel plate had increased the deflection of the bottom chords but decreased the deflection of the top chords. Local buckling of top chords adjacent to the heel plate was the primary failure mode for all the heel plate specimens.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Alexandros Tsipianitis ◽  
Yiannis Tsompanakis

Liquid-filled tanks are effective storage infrastructure for water, oil, and liquefied natural gas (LNG). Many such large-scale tanks are located in regions with high seismicity. Therefore, very frequently base isolation technology has to be adopted to reduce the dynamic distress of storage tanks, preventing the structure from typical modes of failure, such as elephant-foot buckling, diamond-shaped buckling, and roof damage caused by liquid sloshing. The cost-effective seismic design of base-isolated liquid storage tanks can be achieved by adopting performance-based design (PBD) principles. In this work, the focus is given on sliding-based systems, namely, single friction pendulum bearings (SFPBs), triple friction pendulum bearings (TFPBs), and mainly on the recently developed quintuple friction pendulum bearings (QFPBs). More specifically, the study is focused on the fragility analysis of tanks isolated by sliding-bearings, emphasizing on isolators’ displacements due to near-fault earthquakes. In addition, a surrogate model has been developed for simulating the dynamic response of the superstructure (tank and liquid content) to achieve an optimal balance between computational efficiency and accuracy.


2016 ◽  
Vol 98 ◽  
pp. 39-47 ◽  
Author(s):  
Luís Laím ◽  
João Paulo C. Rodrigues ◽  
Hélder D. Craveiro

Sign in / Sign up

Export Citation Format

Share Document