scholarly journals Global asymptotic stability of a delayed plant disease model

2020 ◽  
Vol 1 (1) ◽  
pp. 27-38
Author(s):  
Yuming Chen ◽  
Chongwu Zheng

In this paper, we consider the following system of delayed differentialequations,\[\left\{\begin {array}{rcl}\frac {dS(t)}{dt} & = & \sigma \phi-\beta S(t)I(t-\tau)-\eta S(t),\\\frac {dI(t)}{dt} & = & \sigma(1-\phi)+\betaS(t)I(t-\tau)-(\eta+\omega)I(t),\end {array}\right.\]which can be used to model plant diseases. Here $\phi\in (0,1]$,$\tau\ge 0$, and all other parameters are positive. The case where $\phi=1$ is well studiedand there is a threshold dynamics. Thesystem always has a disease-free equilibrium, which is globallyasymptotically stable if the basic reproduction number $R_0\triangleq\frac{\beta\sigma}{\eta(\eta+\omega)}\le 1$ and is unstable if$R_0>1$; when $R_0>1$, the system also has a unique endemic equilibrium,which is globally asymptotically stable. In this paper, we study thecase where $\phi\in (0,1)$. It turns out that the system only has anendemic equilibrium, which is globally asymptotically stable. Thelocal stability is established by the linearizationmethod while the global attractivity is obtained by the Lyapunovfunctional approach. The theoretical results are illustrated withnumerical simulations.

Author(s):  
B. El Boukari ◽  
N. Yousfi

In this work we investigate a new mathematical model that describes the interactions betweenCD4+ T cells, human immunodeficiency virus (HIV), immune response and therapy with two drugs.Also an intracellular delay is incorporated into the model to express the lag between the time thevirus contacts a target cell and the time the cell becomes actively infected. The model dynamicsis completely defined by the basic reproduction number R0. If R0 ≤ 1 the disease-free equilibriumis globally asymptotically stable, and if R0 > 1, two endemic steady states exist, and their localstability depends on value of R0. We show that the intracellular delay affects on value of R0 becausea larger intracellular delay can reduce the value of R0 to below one. Finally, numerical simulationsare presented to illustrate our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Ozair ◽  
Abid Ali Lashari ◽  
Il Hyo Jung ◽  
Young Il Seo ◽  
Byul Nim Kim

A mathematical model of a vector-borne disease involving variable human population is analyzed. The varying population size includes a term for disease-related deaths. Equilibria and stability are determined for the system of ordinary differential equations. IfR0≤1, the disease-“free” equilibrium is globally asymptotically stable and the disease always dies out. IfR0>1, a unique “endemic” equilibrium is globally asymptotically stable in the interior of feasible region and the disease persists at the “endemic” level. Our theoretical results are sustained by numerical simulations.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 563
Author(s):  
Mahmoud H. DarAssi ◽  
Mohammad A. Safi ◽  
Morad Ahmad

In this paper, we have investigated the global dynamics of a discrete-time middle east respiratory syndrome (MERS-Cov) model. The proposed discrete model was analyzed and the threshold conditions for the global attractivity of the disease-free equilibrium (DFE) and the endemic equilibrium are established. We proved that the DFE is globally asymptotically stable when R0≤1. Whenever R˜0>1, the proposed model has a unique endemic equilibrium that is globally asymptotically stable. The theoretical results are illustrated by a numerical simulation.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1829
Author(s):  
Ardak Kashkynbayev ◽  
Fathalla A. Rihan

In this paper, we study the dynamics of a fractional-order epidemic model with general nonlinear incidence rate functionals and time-delay. We investigate the local and global stability of the steady-states. We deduce the basic reproductive threshold parameter, so that if R0<1, the disease-free steady-state is locally and globally asymptotically stable. However, for R0>1, there exists a positive (endemic) steady-state which is locally and globally asymptotically stable. A Holling type III response function is considered in the numerical simulations to illustrate the effectiveness of the theoretical results.


2021 ◽  
Author(s):  
Lei Zhang ◽  
Maoxing Liu ◽  
Qiang Hou ◽  
Boli Xie

Abstract For some infectious diseases, such as herpes and tuberculosis, there is incomplete recovery and relapse. These phenomena make them difficult to control. In consequence of this status, an SEIRS epidemic model with incomplete recovery and relapse on networks is established and the global dynamics is studied. The results show that when the basic reproduction number R 0 <=1 the disease-free equilibrium is globally asymptotically stable; when R 0 > 1, the endemic equilibrium is globally asymptotically stable. In addition, in consideration of vaccination control strategy, an SVEIRS model is introduced and the optimal control is solved. At last, the theoretical results are illustrated with numerical simulations.


2019 ◽  
Vol 27 (01) ◽  
pp. 19-49 ◽  
Author(s):  
BAKARY TRAORÉ ◽  
OUSMANE KOUTOU ◽  
BOUREIMA SANGARÉ

In this paper, we investigate a nonautonomous and an autonomous model of schistosomiasis transmission with a general incidence function. Firstly, we formulate the nonautonomous model by taking into account the effect of climate change on the transmission. Through rigorous analysis via theories and methods of dynamical systems, we show that the nonautonomous model has a globally asymptotically stable disease-free periodic equilibrium when the associated basic reproduction ratio [Formula: see text] is less than unity. Otherwise, the system admits at least one positive periodic solutions if [Formula: see text] is greater than unity. Secondly, using the average of periodic functions, we further derive the autonomous model associated with the nonautonomous model. Therefore, we show that the disease-free equilibrium of the autonomous model is locally and globally asymptotically stable when the associated reproduction ratio [Formula: see text] is less than unity. When [Formula: see text] is greater than unity, the existence and global asymptotic stability of the endemic equilibrium is established under certain conditions. Finally, using linear and nonlinear specific incidence function, we perform some numerical simulations to illustrate our theoretical results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Liang Tian ◽  
Juping Zhang

In order to study the transmission of rabies epidemics in vampire bats, we propose a mathematical model for vampire bat rabies virus. A threshold R0 is identified which determines the outcome of the disease. If R0<1, the disease-free equilibrium is globally asymptotically stable, and if R0>1, the endemic equilibrium is globally asymptotically stable with certain conditions. Through the numerical simulation, the correctness of the theoretical results is verified. We carry out the sensitivity analysis of the parameters which provide a theoretical basis for preventing and controlling the transmission of bat rabies.


2015 ◽  
Vol 09 (01) ◽  
pp. 1650009 ◽  
Author(s):  
Shouying Huang

In this paper, we study the spreading of infections on complex heterogeneous networks based on an SEIRS epidemic model with nonlinear infectivity. By mathematical analysis, the basic reproduction number R0 is obtained. When R0 is less than one, the disease-free equilibrium is globally asymptotically stable and the disease dies out, while R0 is greater than one, the disease-free equilibrium becomes unstable and the disease is permanent, and in the meantime there exists a unique endemic equilibrium which is globally attractive under certain conditions. Finally, the effects of various immunization schemes are studied. To verify our theoretical results, the corresponding numerical simulations are also included.


2019 ◽  
Vol 4 (2) ◽  
pp. 349 ◽  
Author(s):  
Oluwatayo Michael Ogunmiloro ◽  
Fatima Ohunene Abedo ◽  
Hammed Kareem

In this article, a Susceptible – Vaccinated – Infected – Recovered (SVIR) model is formulated and analysed using comprehensive mathematical techniques. The vaccination class is primarily considered as means of controlling the disease spread. The basic reproduction number (Ro) of the model is obtained, where it was shown that if Ro<1, at the model equilibrium solutions when infection is present and absent, the infection- free equilibrium is both locally and globally asymptotically stable. Also, if Ro>1, the endemic equilibrium solution is locally asymptotically stable. Furthermore, the analytical solution of the model was carried out using the Differential Transform Method (DTM) and Runge - Kutta fourth-order method. Numerical simulations were carried out to validate the theoretical results. 


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Mahmoud A. Ibrahim ◽  
Attila Dénes

AbstractWe present a compartmental population model for the spread of Zika virus disease including sexual and vectorial transmission as well as asymptomatic carriers. We apply a non-autonomous model with time-dependent mosquito birth, death and biting rates to integrate the impact of the periodicity of weather on the spread of Zika. We define the basic reproduction number $${\mathscr {R}}_{0}$$ R 0 as the spectral radius of a linear integral operator and show that the global dynamics is determined by this threshold parameter: If $${\mathscr {R}}_0 < 1,$$ R 0 < 1 , then the disease-free periodic solution is globally asymptotically stable, while if $${\mathscr {R}}_0 > 1,$$ R 0 > 1 , then the disease persists. We show numerical examples to study what kind of parameter changes might lead to a periodic recurrence of Zika.


Sign in / Sign up

Export Citation Format

Share Document