scholarly journals Is There a Sex Difference in Trunk Neuromuscular Control among Recreational Athletes during Cutting Maneuvers?

2021 ◽  
pp. 743-750
Author(s):  
Guillaume Mornieux ◽  
Dominic Gehring ◽  
Albert Gollhofer

Trunk motion is most likely to influence knee joint injury risk, but little is known about sex-related differences in trunk neuromuscular control during changes of direction. The purpose of the present study was to test whether differences in trunk control between males and females during changes of direction exist. Twelve female and 12 male recreational athletes (with at least 10 years of experience in team sport) performed unanticipated changes of direction with 30° and 60° cut angles, while 3D trunk and leg kinematics, ground reaction forces and trunk muscles electromyography were recorded. Trunk kinematics at the time of peak knee abduction moment and directed co-contraction ratios for trunk muscles during the pre-activation and weight acceptance phases were determined. None of the trunk kinematics and co-contraction ratio variables, nor peak knee abduction moment differed between sexes. Compared to the 30° cut, trunk lateral flexion remained unchanged and trunk external rotation was reduced (p < 0.001; η²p (partial eta squared for effect size) = 0.78), while peak knee abduction moment was increased (p < 0.001; η²p = 0.84) at 60°. The sharper cutting angle induced muscle co-contraction during the pre-activation directed less towards trunk flexors (p < 0.01; η²p = 0.27) but more towards trunk medial flexors and rotators opposite to the movement direction (p < 0.001; η²p > 0.46). However, muscle co-contraction during the weight acceptance phase remained comparable between 30° and 60°. The lack of sex-related differences in trunk control does not explain knee joint injury risk discrepancies between sexes during changes of direction. Trunk neuromuscular strategies during sharper cutting angles revealed the importance of external oblique muscles to maintain trunk lateral flexion at the expense of trunk rotation. This provides new information for trunk strength training purposes for athletes performing changes of direction.

2009 ◽  
Vol 44 (3) ◽  
pp. 256-263 ◽  
Author(s):  
Riann M. Palmieri-Smith ◽  
Scott G. McLean ◽  
James A. Ashton-Miller ◽  
Edward M. Wojtys

Abstract Context: Sex differences in neuromuscular control of the lower extremity have been identified as a potential cause for the greater incidence of anterior cruciate ligament (ACL) injuries in female athletes compared with male athletes. Women tend to land in greater knee valgus with higher abduction loads than men. Because knee abduction loads increase ACL strain, the inability to minimize these loads may lead to ACL failure. Objective: To investigate the activation patterns of the quadriceps and hamstrings muscles with respect to the peak knee abduction moment. Design: Cross-sectional study. Setting: Neuromuscular research laboratory. Patients or Other Participants: Twenty-one recreationally active adults (11 women, 10 men). Main Outcome Measure(s): Volunteers performed 3 trials of a 100-cm forward hop. During the hop task, we recorded surface electromyographic data from the medial and lateral hamstrings and quadriceps and recorded lower extremity kinematics and kinetics. Lateral and medial quadriceps-to-hamstrings (Q∶H) cocontraction indices, the ratio of medial-to-lateral Q∶H cocontraction, normalized root mean square electromyographic data for medial and lateral quadriceps and hamstrings, and peak knee abduction moment were calculated and used in data analyses. Results: Overall cocontraction was lower in women than in men, whereas activation was lower in the medial than in the lateral musculature in both sexes (P &lt; .05). The medial Q∶H cocontraction index (R2  =  0.792) accounted for a significant portion of the variance in the peak knee abduction moment in women (P  =  .001). Women demonstrated less activation in the vastus medialis than in the vastus lateralis (P  =  .49) and less activation in the medial hamstrings than in the lateral hamstrings (P  =  .01). Conclusions: Medial-to-lateral Q∶H cocontraction appears to be unbalanced in women, which may limit their ability to resist abduction loads. Because higher abduction loads increase strain on the ACL, restoring medial-to-lateral Q∶H cocontraction balance in women may help reduce ACL injury risk.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0015
Author(s):  
Cody R. Criss ◽  
Dustin R. Grooms ◽  
Jed A. Diekfuss ◽  
Manish Anand ◽  
Alexis B. Slutsky-Ganesh ◽  
...  

Background: Anterior cruciate ligament (ACL) injuries predominantly occur via non-contact mechanisms, secondary to motor coordination errors resulting in aberrant frontal plane knee loads that exceed the thresholds of ligament integrity. However, central nervous system processing underlying high injury-risk motor coordination errors remain unknown, limiting the optimization of current injury reduction strategies. Purpose: To evaluate the relationships between brain activity during motor tasks with injury-risk loading during a drop vertical jump. Methods: Thirty female high school soccer players (16.10 ± 0.87 years, 165.10 ± 4.64 cm, 63.43 ± 8.80 kg) were evaluated with 3D biomechanics during a standardized drop vertical jump from a 30 cm box and peak knee abduction moment was extracted as the injury-risk variable of interest. A neuroimaging session to capture neural activity (via blood-oxygen-level-dependent signal) was then completed which consisted of 4 blocks of 30 seconds of repeated bilateral leg press action paced to a metronome beat of 1.2 Hz with 30 seconds rest between blocks. Knee abduction moment was evaluated relative to neural activity to identify potential neural contributors to injury-risk. Results: There was a direct relationship between increased landing knee abduction moment and increased neural activation within regions corresponding to the lingual gyrus, intracalcarine cortex, posterior cingulate cortex, and precuneus (r2= 0.68, p corrected < .05, z max > 3.1; Table 1 & Figure 1). Conclusion: Elevated activity in regions that integrate sensory, spatial, and attentional information may contribute to elevated frontal plane knee loads during landing. Interestingly, a similar activation pattern related to high-risk landing mechanics has been found in those following injury, indicating that predisposing factors to injury may be accentuated by injury or that modern rehabilitation does not recover prospective neural control deficits. These data uncover a potentially novel brain marker that could guide the discovery of neural-therapeutic targets that reduce injury risk beyond current prevention methods. [Table: see text][Figure: see text]


2021 ◽  
pp. 1-8
Author(s):  
Dhruv Gupta ◽  
Jeffrey A. Reinbolt ◽  
Cyril J. Donnelly

Knee abduction/adduction moment and knee internal rotation moment are known surrogate measures of anterior cruciate ligament (ACL) load during tasks like sidestepping and single-leg landing. Previous experimental literature has shown that a variety of kinematic strategies are associated or correlated with ACL injury risk; however, the optimal kinematic strategies needed to reduce peak knee moments and ACL injury are not well understood. To understand the complex, multifaceted kinematic factors underpinning ACL injury risk and to optimize kinematics to prevent the ACL injury, a musculoskeletal modeling and simulation experimental design was used. A 14-segment, 37-degree-of-freedom, dynamically consistent skeletal model driven by force/torque actuators was used to simulate whole-body single-leg jump landing kinematics. Using the residual reduction algorithm in OpenSim, whole-body kinematics were optimized to reduce the peak knee abduction/adduction and internal/external rotation moments simultaneously. This optimization was repeated across 30 single-leg jump landing trials from 10 participants. The general optimal kinematic strategy was to bring the knee to a more neutral alignment in the transverse plane and frontal plane (featured by reduced hip adduction angle and increased knee adduction angle). This optimized whole-body kinematic strategy significantly reduced the peak knee abduction/adduction and internal rotation moments, transferring most of the knee load to the hip.


2005 ◽  
Vol 33 (4) ◽  
pp. 492-501 ◽  
Author(s):  
Timothy E. Hewett ◽  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Robert S. Heidt ◽  
Angelo J. Colosimo ◽  
...  

Background Female athletes participating in high-risk sports suffer anterior cruciate ligament injury at a 4- to 6-fold greater rate than do male athletes. Hypothesis Prescreened female athletes with subsequent anterior cruciate ligament injury will demonstrate decreased neuromuscular control and increased valgus joint loading, predicting anterior cruciate ligament injury risk. Study Design Cohort study; Level of evidence, 2. Methods There were 205 female athletes in the high-risk sports of soccer, basketball, and volleyball prospectively measured for neuromuscular control using 3-dimensional kinematics (joint angles) and joint loads using kinetics (joint moments) during a jump-landing task. Analysis of variance as well as linear and logistic regression were used to isolate predictors of risk in athletes who subsequently ruptured the anterior cruciate ligament. Results Nine athletes had a confirmed anterior cruciate ligament rupture; these 9 had significantly different knee posture and loading compared to the 196 who did not have anterior cruciate ligament rupture. Knee abduction angle (P <. 05) at landing was 8° greater in anterior cruciate ligament-injured than in uninjured athletes. Anterior cruciate ligament-injured athletes had a 2.5 times greater knee abduction moment (P <. 001) and 20% higher ground reaction force (P <. 05), whereas stance time was 16% shorter; hence, increased motion, force, and moments occurred more quickly. Knee abduction moment predicted anterior cruciate ligament injury status with 73% specificity and 78% sensitivity; dynamic valgus measures showed a predictive r2 of 0.88. Conclusion Knee motion and knee loading during a landing task are predictors of anterior cruciate ligament injury risk in female athletes. Clinical Relevance Female athletes with increased dynamic valgus and high abduction loads are at increased risk of anterior cruciate ligament injury. The methods developed may be used to monitor neuromuscular control of the knee joint and may help develop simpler measures of neuromuscular control that can be used to direct female athletes to more effective, targeted interventions.


2013 ◽  
Vol 29 (6) ◽  
pp. 756-762 ◽  
Author(s):  
Kristof Kipp ◽  
Tyler N. Brown ◽  
Scott G. McLean ◽  
Riann M. Palmieri-Smith

The purpose of this study was to examine the combined impact of experience and decision making on frontal plane knee joint biomechanics during a cutting maneuver. Kinematic and kinetic data were collected from 12 recreationally active and 18 NCAA Division I female athletes during execution of anticipated and unanticipated single-leg land-and-cut maneuvers. Knee joint abduction angles and external knee joint abduction torques were calculated and discrete peak stance-phase variables were extracted. Angle and torque time-series data were also submitted to separate functional data analyses. Variables derived from the functional data analyses indicated that decision making influenced knee abduction angle and torque time series in the recreational group only. Specifically, these variables pointed to greater knee abduction at the end of stance as well as a greater, albeit delayed peak in knee abduction torque at the beginning of landing in the recreational athletes during the unanticipated condition. In addition, the recreational athletes displayed greater discrete peak knee abduction angles than the Division I athletes regardless of condition. Discrete peak knee abduction torque did not differ between groups or conditions.


Author(s):  
Yutaro Morishige ◽  
Kengo Harato ◽  
Shu Kobayashi ◽  
Yasuo Niki ◽  
Morio Matsumoto ◽  
...  

Abstract Background Neuromuscular imbalance will lead to loading asymmetry in sporting activities. This asymmetry is related to leg dominance, which has been associated with increased risk of anterior cruciate ligament (ACL) injury. Therefore, potential biomechanical differences between legs are important. However, little attention has been paid to the biomechanical details of leg dominance. The purpose of the present study was to clarify the relationship between leg dominance and knee biomechanics in females with different activity level during dynamic athletic tasks. Methods A total of 23 female collegiate (mean age = 19.6 ± 1.4 years, mean body mass index = 21.5 ± 0.9) and 19 recreational athletes (mean age = 20.7 ± 1.1 years, mean body mass index = 20.5 ± 1.7) were enrolled. Tegner activity scores of the collegiate and recreational athletes were 9 and 7, respectively. Knee kinematic and kinetic asymmetries between the dominant (DL) and non-dominant (NDL) legs during the landing phase of drop vertical jump (DVJ) were assessed using three-dimensional motion analysis in collegiate and recreational athletes separately. Statistical comparison was done using two-tailed paired t test between DL and NDL in each athlete. Results The peak knee abduction angle was significantly larger on the DL than on the NDL in collegiate athletes. Knee abduction angle at initial contact (IC), peak knee abduction angle, knee internal rotation angle at IC, and peak knee internal rotation angle were significantly larger on the NDL than on the DL in recreational athletes. Moreover, peak knee abduction moment within 40 ms from IC was larger on the NDL than on the DL in recreational athletes, while the moment was not significantly different in collegiate athletes. Conclusions From the present study, the relationship between leg dominance and knee biomechanics was totally different in females with different activity level. Specifically, asymmetry of the knee abduction angle between limbs was opposite between female recreational and collegiate athletes. According to previous literatures, abduction and internal rotation angles as well as abduction moment were key issues for mechanism of non-contact ACL injury. Therefore, the NDL in female recreational athletes was associated with increased risk of ACL injury.


2018 ◽  
Vol 27 (5) ◽  
pp. 438-444
Author(s):  
Lukas D. Linde ◽  
Jessica Archibald ◽  
Eve C. Lampert ◽  
John Z. Srbely

Context: Females suffer 4 to 6 times more noncontact anterior cruciate ligament (ACL) injuries than males due to neuromuscular control deficits of the hip musculature leading to increases in hip adduction angle, knee abduction angle, and knee abduction moment during dynamic tasks such as single-leg squats. Lateral trunk displacement has been further related to ACL injury risk in females, leading to the incorporation of core strength/stability exercises in ACL preventative training programs. However, the direct mechanism relating lateral trunk displacement and lower limb ACL risk factors is not well established. Objective: To assess the relationship between lateral trunk displacement and lower limb measures of ACL injury risk by altering trunk control through abdominal activation techniques during single-leg squats in healthy females. Design: Interventional study setting: movement and posture laboratory. Participants: A total of 13 healthy females (21.3 [0.88] y, 1.68 [0.07] m, and 58.27 [5.46] kg). Intervention: Trunk position and lower limb kinematics were recorded using an optoelectric motion capture system during single-leg squats under differing conditions of abdominal muscle activation (abdominal hollowing, abdominal bracing, and control), confirmed using surface electromyography. Main Outcome Measures: Lateral trunk displacement, peak hip adduction angle, peak knee abduction angle/moment, and average muscle activity from bilateral internal oblique, external oblique, and erector spinae muscles. Results: No differences were observed for peak lateral trunk displacement, peak hip adduction angle, or peak knee abduction angle/moment. Abdominal hollowing and bracing elicited greater muscle activation than the control condition, and bracing was greater than hollowing in 4 of 6 muscles recorded. Conclusion: The lack of reduction in trunk, hip, and knee measures of ACL injury risk during abdominal hollowing and bracing suggests that these techniques alone may provide minimal benefit in ACL injury prevention training.


2020 ◽  
Vol 48 (6) ◽  
pp. 1496-1504
Author(s):  
Wyatt D. Ihmels ◽  
Kayla D. Seymore ◽  
Tyler N. Brown

Background: Despite success at preventing ankle sprain, prophylactics that restrict ankle plantarflexion motion may produce deleterious knee biomechanics and increase injury risk. Purpose: To determine if ankle prophylactics that restrict plantar- and dorsiflexion motion produce changes in knee biomechanics during a single-leg cut and whether those changes differ between sexes. Study Design: Controlled laboratory study. Methods: A total of 17 male and 17 female participants performed a single-leg cut with 4 conditions: Ankle Roll Guard (ARG), lace-up brace, nonelastic tape, and an unbraced control. Peak stance knee flexion, abduction, and internal rotation joint angle and moment; total knee reaction moment (TKM) and its components (sagittal, frontal, and transverse); and ankle plantarflexion and inversion range of motion (ROM) and peak stance joint moments were tested with a repeated measures analysis of variance to determine the main effect and interaction of condition and sex. Results: Brace and tape restricted plantarflexion ROM as compared with ARG and control (all P < .001). With the brace, women had increased peak knee abduction angle versus ARG ( P = .012) and control ( P = .009), and men had decreased peak knee internal rotation moment as compared with ARG ( P = .032), control ( P = .006), and tape ( P = .003). Although the restrictive tape decreased inversion ROM when compared with ARG ( P = .004) and brace ( P = .017), it did not change knee biomechanics. Neither brace nor tape produced significant changes in TKM or components, yet sagittal TKM increased with ARG versus control ( P = .016). Women exhibited less ankle inversion ROM ( P = .003) and moment ( P = .049) than men, while men exhibited significantly greater frontal TKM ( P = .022) and knee internal rotation moment with the ARG ( P = .029), control ( P = .007), and tape ( P = .016). Conclusion: Prophylactics that restrict ankle plantarflexion motion may elicit knee biomechanical changes during a single-leg cut, but these changes may depend on prophylactic design and user’s sex and may increase women’s injury risk. Clinical Relevance: Sex-specific ankle prophylactic designs may be warranted to reduce knee injury during sports.


Sign in / Sign up

Export Citation Format

Share Document