Process optimization of paddy drying in cross-flow aerated drying cum storage bin

2020 ◽  
Vol 44 (03) ◽  
pp. 7-15
Author(s):  
Sruthi N. U. ◽  
U. C. Lohani ◽  
N. C. Shahi ◽  
J. P. Pandey

A cross-flow aerated drying cum storage bin was developed and the drying conditions for paddy was optimised. The drying cum storage bin consisted of a cylindrical outer drum with two inner basins having perorated walls made of galvanised iron to hold paddy, and a central perforated vertical duct. A blower (1.5 kW) connected at the base supplies air to the heating chamber (with 1 kW heater coil) and moves vertically through the central duct. The hot air passes horizontally through the grain bulk taking the moisture and moves towards the perforated walls of the bin and exit through the space between the drum and the basins. Drying experiments were conducted with bed thickness of 15 cm to study the drying characteristics of paddy and evaluate the performance of the dryer. Paddy was dried from 18 to 12% (wb) moisture content with the independent parameters selected being drying air temperature (35, 40 and 45 °C) and airflow rate (15, 21 and 27 m3 /h). The drying time varied 1.5 to 4.75 hours over the entire experimental conditions. The analysis of drying rates for both top and bottom bins showed minimum variation indicating uniform drying throughout the depth of the bin. The estimated optimum conditions of drying were 45°C temperature and 27 m3 /h airflow rate. The predicted values of responses at optimised conditions were 1.51 hours of drying time, 6.05x10-7 m2 /s of effective moisture diffusivity, 0.078 W/m2 K of heat transfer coefficient, and 8.23x105 kJ/kg of specific energy consumption. Further, exergy analysis indicated that exergy loss increased with increase in drying air temperature and airflow rate.

2012 ◽  
Vol 45 (2) ◽  
pp. 5-14 ◽  
Author(s):  
R. Chayjan ◽  
H. Agha-Alizade ◽  
H. Barikloo ◽  
B. Soleymani

Modeling Some Drying Characteristics of Cantaloupe Slices This study investigated thin layer drying of cantaloupe slices under different drying conditions with initial moisture content about 18.53 (d.b.). Air temperature levels of 40, 50, 60 and 70°C were applied in drying of samples. Fick's second law in diffusion was applied to compute the effective moisture diffusivity (Deff) of cantaloupe slices. Minimum and maximum values of Deff were 4.05x10-10 and 1.61x10-9 m2/s, respectively. Deff values increased as the input air temperature was increased. Activation energy values of cantaloupe slices were found between 30.43 and 36.23 kJ/mol for 40°C to 70°C, respectively. The specific energy consumption for drying cantaloupe slices was calculated at the boundary of 1.01x105 and 9.55x105 kJ/kg. Increasing in drying air temperature in different air velocities led to increase in specific energy value. Results showed that applying the temperature of 70°C is more effective for convective drying of cantaloupe slices. The aforesaid drying parameters are important to select the best operational point of a dryer and to precise design of the system.


2016 ◽  
Vol 62 (No. 4) ◽  
pp. 170-178 ◽  
Author(s):  
R.A. Chayjan ◽  
M. Kaveh

A laboratory scale microwave-convection dryer was used to dry the eggplant fruit, applying microwave power in the range of 270–630 W, air temperature in the range of 40–70°C and air velocity in the range of 0.5–1.7 m/s. Six mathematical models were used to predict the moisture ratio of eggplant fruit slices in thin layer drying. The results showed that the Midilli et al. model had supremacy in prediction of turnip slice drying behavior. Minimum and maximum values of effective moisture diffusivity (D<sub>eff</sub>) were 1.52 × 10<sup>–9</sup> and 3.39 × 10<sup>–9</sup> m<sup>2</sup>/s, respectively. Activation energy values of eggplant slices were found between 13.33 and 17.81 kJ/mol for 40°C to 70°C, respectively. The specific energy consumption for drying eggplant slices was calculated at the boundary of 86.47 and 194.37 MJ/kg. Furthermore, in the present study, the application of Artificial Neural Network (ANN) for predicting the drying rate and moisture ratio was investigated. Microwave power, drying air temperature, air velocity and drying time were considered as input parameters for the model.


Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 86 ◽  
Author(s):  
Ebrahim Taghinezhad ◽  
Antoni Szumny ◽  
Mohammad Kaveh ◽  
Vali Rasooli Sharabiani ◽  
Anil Kumar ◽  
...  

The effect of hybrid infrared-convective (IRC), microwave (MIC) and infrared-convective-microwave (IRCM) drying methods on thermodynamic (drying kinetics, effective moisture diffusivity coefficient (Deff), specific energy consumption (SEC)) and quality (head rice yield (HRY), color value and lightness) characteristics of parboiled rice samples were investigated in this study. Experimental data were fitted into empirical drying models to explain moisture ratio (MR) variations during drying. The Artificial Neural Network (ANN) method was applied to predict MR. The IRCM method provided shorter drying time (reduce percentage = 71%) than IRC (41%) and microwave (69%) methods. The Deff of MIC drying (6.85 × 10−11–4.32 × 10−10 m2/s) was found to be more than the observed in IRC (1.32 × 10−10–1.87 × 10−10 m2/s) and IRCM methods (1.58 × 10−11–2.31 × 10−11 m2/s). SEC decreased during drying. Microwave drying had the lowest SEC (0.457 MJ/kg) compared to other drying methods (with mean 28 MJ/kg). Aghbashlo’s model was found to be the best for MR prediction. According to the ANN results, the highest determination coefficient (R2) values for MR prediction in IRC, IRCM and MIC drying methods were 0.9993, 0.9995 and 0.9990, respectively. The HRY (from 60.2 to 74.07%) and the color value (from 18.08 to 19.63) increased with the drying process severity, thereby decreasing the lightness (from 57.74 to 62.17). The results of this research can be recommended for the selection of the best dryer for parboiled paddy. Best drying conditions in the study is related to the lowest dryer SEC and sample color value and the highest HRY and sample lightness.


2021 ◽  
Vol 37 (5) ◽  
pp. 763-774
Author(s):  
Ernest Ekow Abano

HighlightsMicrowave pretreatment before drying reduced drying time significantly.Microwave-assisted drying increased the effective moisture diffusivity coefficient.Microwave pretreatment before convective hot-air drying improved quality parameters.The Middili et al. (2002) model best fitted the microwave-assisted drying of sugarloaf pineapples.Abstract. This study’s objective was to provide the optimum drying conditions to produce quality dried sugarloaf pineapples using microwave pretreatments before the conventional hot air drying. For this, the effect of microwave power (385 to 697 W), microwave time (2 to 4 min), and air temperature (50°C to 70°C) on the drying kinetics and quality of sugarloaf pineapple were evaluated using the Box Behnken response surface methodology. To reach a 17.44±0.09% kg/kg dry matter moisture content, we found the optimum drying conditions for sugarloaf pineapples to be 697 W microwave power for 2.26 min before convective hot air drying at a temperature of 64.75°C. The predicted drying time, ascorbic acid content, and browning index were 13.68 h, 20.89 mg/100 g, and 0.099 Abs unit at this optimum condition, respectively. The pineapple slices’ effective moisture removal rate pretreated with microwave before drying was higher than the control and was between 6.42 × 10-10 m2/s and 11.82 × 10-10 m2/s while ones without a microwave were between 3.54 × 10-10 m2/s and 8.78 × 10-10 m2/s for drying at air temperature between 50°C and 70°C. It was discovered that the Midilli et al. (2002) model was the most appropriate thin layer model for microwave-assisted drying of sugarloaf pineapples. The pineapple slices’ drying rate potential generally increased with microwave power and pretreatments time but not the corresponding increase in the air temperature. Drying time for microwave-assisted drying was in the range of 11 to 20 h, while the ones without microwaves were between 18 and 24 h. Therefore, microwaves should be considered a pretreatment step to the industrial production of sugarloaf pineapple to reduce drying time and produce better quality products. Keywords: Drying, Hot air, Microwave, Moisture diffusivity, Sugarloaf pineapple.


2014 ◽  
Vol 3 (5) ◽  
pp. 103 ◽  
Author(s):  
Tinuade J. Afolabi ◽  
Toyosi Y. Tunde-Akintunde ◽  
Olusegun J. Oyelade

<p>The thin layer drying behaviour of ginger slices in a laboratory dryer was examined. The slices of 5 mm, 10 mm and 15 mm thicknesses were dried using heated ambient air at temperatures from 40 to 70 ºC and air velocity of 1.5 m/s. The effects of drying air temperature and slice thickness on the drying characteristics, drying time and energy requirement of drying process was determined. The results have shown that an increase in the drying air temperature causes shorter drying times. Thinner slices also causes a shorter drying time. The effective moisture diffusivity values increased from 3.36814 × 10<sup>-10</sup> m<sup>2</sup>/s to 5.82524 × 10<sup>-9</sup> m<sup>2</sup>/s while the activation energy values for different slice thickness of ginger varied from 196.15 to 198.79 kJ/mol. The total needed energy varied from 735.3 to 868.5 kWh while the value of specific energy requirement varied from 3676.6 to 4342.4 kWh/kg respectively.</p>


Author(s):  
Aree Achariyaviriya ◽  
Paradorn Nuthong

In this work, it is presented a study of the effects of drying conditions on the optimal bed thickness of the whole longan. The criteria for evaluation of the drying process are specific energy consumption and drying time which the difference of moisture between top and bottom of drying chamber is less than 10%dry basis. The mathematical model is developed for finding the effects of the drying conditions on the optimal bed thickness. The drying conditions are drying air temperature, specific air flow rate, and fraction of recycled air. Experimental data were compared with the simulated results to verify the model. Furthermore, the sensitivity analysis of the fraction of air recycled, drying air temperature, specific airflow rate, initial moisture content, and bed thickness of longan are study. The results showed that there was good agreement between the simulated drying rate and those experimentally observed. In addition, there was a well agreement with respect to the shapes of the drying air temperature and product temperature profiles. From the simulated results, the optimal bed thickness of 40 cm, the specific energy consumption of 10.56 MJ/kg-water and drying time of 64.2 h were found. The responsive conditions were drying air temperature of 75°C, the fraction of recycled air of 90%, and the specific air flow rate of 73 kg-dry air/h-kg dry longan.


Author(s):  
Laslo Šereš ◽  
Ljubica Dokić ◽  
Bojana Ikonić ◽  
Dragana Šoronja-Simović ◽  
Miljana Djordjević ◽  
...  

Cross-flow microfiltration using ceramic tubular membrane was applied for treatment of steepwater from corn starch industry. Experiments are conducted according to the faced centered central composite design at three different transmembrane pressures (1, 2 and 3 bar) and cross-flow velocities (100, 150 and 200 L/h) with and without the usage of Kenics static mixer. For examination of the influence of the selected operating conditions at which usage of the static mixer is justified, a response surface methodology and desirability function approach were used. Obtained results showed improvement in the average permeate flux by using Kenics static mixer for 211 % to 269 % depending on experimental conditions when compared to the system without the static mixer. As a result of optimization, the best results considering flux improvement as well as reduction of specific energy consumption were obtained at low transmembrane pressure and lower feed cross-flow rates.


2020 ◽  
Vol 60 (1) ◽  
pp. 49-55
Author(s):  
Jan Havlík ◽  
Tomáš Dlouhý ◽  
Michel Sabatini

This article investigates the effect of the filling ratio of the indirect rotary dryers on their operating characteristics. For moist biomass drying before combustion, the use of indirect drum dryers heated by a low pressure steam has proven to be highly suitable. Regarding the design of new dryers, it is necessary to experimentally verify the operating characteristics for specific materials and drying conditions. For this purpose, a set of experiments on a steam heated rotary drum dryer were carried out with green wood chips containing 60 to 66 wt% of moisture. The following operational characteristics of the dryer were experimentally determined: drying curves describing the process, square and volumetric evaporation capacities and drying heat consumptions. Based on the experimental results, the effect of various drum filling by dried material on the mentioned operating characteristics was analysed. On the one hand, higher drum filling ratio increases the drying time, on the other hand, the evaporation capacity also increases, while the specific energy consumption does not significantly alter. The maximum value of the evaporation capacity was reached when the drum was filled to 20 wt%. When the filling ratio was increased to 25 wt%, the evaporation capacity experienced almost no change.


Author(s):  
Magesh Ganesh Pillai ◽  
Iyyasamy Regupathi ◽  
Lima Rose Miranda ◽  
Thanapalan Murugesan

The drying characteristics of plaster of paris (POP) under microwave conditions at different microwave power input, initial moisture content, sample thickness and drying time were studied. Further the experimental data on moisture ratio of POP for different operating conditions were obtained and calculations were made using nine basic drying model equations. The appropriate model with modified constants and coefficients to represent the drying kinetics of POP was found through the analysis of the statistical analysis. The effective moisture diffusivity of the drying process was also computed for different experimental conditions and a relationship between the drying rate constant and the effective moisture diffusivity was obtained. The energy consumption for microwave drying of plaster of paris at different experimental conditions were also computed.


2020 ◽  
Vol 10 (18) ◽  
pp. 6309
Author(s):  
Yousef Abbaspour-Gilandeh ◽  
Mohammad Kaveh ◽  
Muhammad Aziz

In this study, the drying time, effective moisture diffusivity (Deff), specific energy consumption (SEC), and quality (color, shrinkage, and rehydration) of the ultrasound-pretreated (US) carrot slices were compared when dried by hot air drying (HD), microwave drying (MWD), infrared drying (INFD), and hybrid methods of MW–HD and INF–HD. Five mathematical models were considered to describe the drying kinetics in the carrots. The results show that US+MW–HD and INFD were the fastest and the slowest drying techniques compared to the HD technique with a 73% and 23% drying time reduction, respectively. The Deff ranged from 7.12 × 10−9 to 2.78 × 10−8 m2/s. The highest and lowest SECs were 297.29 ± 11.21 and 23.75 ± 2.22 MJ/kg which were observed in the HD and US+MWD, respectively. The color variation indices indicated that the best sample in terms of color stability was the one dried by US+MW–HD with the color variation of 11.02 ± 0.27. The lowest and highest shrinkage values were also observed in the samples dried by US+MWD and HD (31.8 ± 1.1% and 62.23 ± 1.77%), respectively. Samples dried by US+MWD and HD possessed the highest and lowest rehydration, respectively. Although the carrot slices dried at a higher pace by US+MW–HD (compared to US+MWD), the shrinkage and SEC of the samples dried by US+MWD were significantly lower than the US+MW–HD (p < 0.05). Therefore, it can be concluded that the application of the US+MWD method can be considered as a proper alternative for drying the carrot slices when compared to the HD, MWD, INFD, and hybrid methods.


Sign in / Sign up

Export Citation Format

Share Document