Optimized Integration of Electric Vehicles with Lithium Iron Phosphate Batteries into the Regulation Service Market of Smart Grids - Enhanced Vehicle-to-Grid Business Model

2015 ◽  
Vol 1115 ◽  
pp. 531-534
Author(s):  
Siti Fauziah Toha

It is well known that the main constraint of electric vehicles (EVs) is the capabilities to supply efficient energy for driving-range that is comparable to petrol fueled vehicles. Moreover, a large number of batteries needed for EV contribute to heavy weight, poor durability and pricy total cost. In view of that, the need to prolong the battery lifetime, and use its full capacity, is of utmost importance. Therefore, an accurate battery model is a challenging first step to the overall problem soving chain. This paper presents a transfer function model prediction with nature-inspired approach for a Lithium iron phosphate battery. An Ant Colony Optimisation technique is used in search for accurate model with robust capability to adapt with different input current based on the New European Driving Cycle (NEDC) range. The model is further validated with autocorrelation and cross-correlation test and it is proven to give an error tolerance between the 95% confidence limit.


2022 ◽  
pp. 1192-1211
Author(s):  
Cosmin Darab

Electric vehicles were proposed as a good solution to solving energy crisis and environmental problems caused by the traditional internal combustion engine vehicles. In the last years due to the rapid development of the electric vehicles, the problem of power grid integration was addressed. In order to not put additional pressure onto the power grid several new technologies were developed. This chapter presents the smart grid technology, vehicle-to-grid concept, and electric vehicles grid integration. These technologies made possible the integration of electric vehicles without any major changes in the power grid. Moreover, electric vehicles integration brought new benefits to the power grid like better integration of renewable energy.


Author(s):  
Kai Wu ◽  

Major countries and automobile manufacturers in the world jointly promote the transformation of automobile energy and boost the development of electric vehicles. As the most widely used power battery, the lithium-ion power battery comes under the spotlight. The progress of lithium iron phosphate batteries and ternary lithium batteries has given rise to the hope of transformation. And the breakthrough of solidstate batteries has laid a solid foundation for future highperformance batteries. This paper reviews and analyzes the strengths and weaknesses of three power batteries, and evaluates their modifications, application, and current situation. It can be concluded that ternary lithium batteries cannot replace lithium iron phosphate batteries and solid-state batteries temporarily cannot be widely produced and applied.


Author(s):  
G. Fournier ◽  
F. Lindenlauf ◽  
M. Baumann ◽  
R. Seign ◽  
M. Weil

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2625 ◽  
Author(s):  
Yuancheng Li ◽  
Pan Zhang ◽  
Yimeng Wang

Vehicle-to-grid (V2G) is an important component of smart grids and plays a significant role in improving grid stability, reducing energy consumption and generating cost. However, while electric vehicles are being charged, it is possible to expose the location and movement trajectories of the electric vehicles, thereby triggering a series of privacy and security issues. In response to this problem, we propose a new quadtree-based spatial decomposition algorithm to protect the location privacy of electric vehicles. First of all, we use a random sampling algorithm, which is based on differential privacy, to obtain enough spatial data to achieve the balance between large-scale spatial data and the amount of noise. Secondly, in order to overcome the shortcomings of using tree height to control Laplacian noise in the quadtree, we use sparse vector technology to control the noise added to the tree nodes. Finally, according to the vehicle-to-grid network structure in the smart grid, we propose a location privacy protection model based on distributed differential privacy technology for EVs in vehicle-to-grid networks. We demonstrate application of the proposed model in real spatial data and show that it can achieve the best effect on the security of the algorithm and the availability of data.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 834 ◽  
Author(s):  
Siqin Xiong ◽  
Junping Ji ◽  
Xiaoming Ma

Battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) are seen as the most promising alternatives to internal combustion vehicles, as a means to reduce the energy consumption and greenhouse gas (GHG) emissions in the transportation sector. To provide the basis for preferable decisions among these vehicle technologies, an environmental benefit evaluation should be conducted. Lithium iron phosphate (LFP) and lithium nickel manganese cobalt oxide (NMC) are two most often applied batteries to power these vehicles. Given this context, this study aims to compare life cycle energy consumption and GHG emissions of BEVs and PHEVs, both of which are powered by LFP and NMC batteries. Furthermore, sensitivity analyses are conducted, concerning electricity generation mix, lifetime mileage, utility factor, and battery recycling. BEVs are found to be less emission-intensive than PHEVs given the existing and near-future electricity generation mix in China, and the energy consumption and GHG emissions of a BEV are about 3.04% (NMC) to 9.57% (LFP) and 15.95% (NMC) to 26.32% (LFP) lower, respectively, than those of a PHEV.


2021 ◽  
Vol 237 ◽  
pp. 02018
Author(s):  
Yu Tian ◽  
Zhengyuan Zhu ◽  
Shuangyu Liu ◽  
Dongpei Qian ◽  
Xiao Yan ◽  
...  

Lithium ion battery is the most widely used and reliable power source for electric vehicles. With the development of electric vehicles, the safety, energy density, life and reliability of lithium ion batteries have been continuously improved. However, in the field of vehicle power battery technology, battery monomers are combined in series and parallel to provide enough energy, but one of the major problems faced by group batteries is the consistency between battery monomers. Taking the capacity increment curve (IC curve) of lithium iron phosphate battery as the analysis tool, it is found that the characteristic peak of IC curve of different monomers in battery pack can reflect the relationship of monomer capacity. On this basis, the mathematical model is established, and the IC curve II peak characteristic point of a single cell are used as the reference to characterize the capacity of the single cell one by one. The results show that the method can be used in the normal charging process of the battery pack, and the capacity of the single cell in the battery pack can be characterized in real time during the whole life of the battery pack. It has certain research value for the ladder utilization and accurate management of battery pack.


Sign in / Sign up

Export Citation Format

Share Document