scholarly journals Development Status and Prospects of Lithium-ion Power Batteries for Electric Vehicles

Author(s):  
Kai Wu ◽  

Major countries and automobile manufacturers in the world jointly promote the transformation of automobile energy and boost the development of electric vehicles. As the most widely used power battery, the lithium-ion power battery comes under the spotlight. The progress of lithium iron phosphate batteries and ternary lithium batteries has given rise to the hope of transformation. And the breakthrough of solidstate batteries has laid a solid foundation for future highperformance batteries. This paper reviews and analyzes the strengths and weaknesses of three power batteries, and evaluates their modifications, application, and current situation. It can be concluded that ternary lithium batteries cannot replace lithium iron phosphate batteries and solid-state batteries temporarily cannot be widely produced and applied.

2020 ◽  
Vol 10 (15) ◽  
pp. 5330
Author(s):  
Tomás Cortés-Arcos ◽  
Rodolfo Dufo-López ◽  
José L. Bernal-Agustín

Estimating the degradation costs of lithium-ion batteries is essential to the designs of many systems because batteries are increasingly used in diverse applications. In this study, cyclic and calendar degradation models of lithium batteries were considered in optimization problems with randomized non-cyclic batteries use. Such models offer realistic results. Electrical, thermal, and degradation models were applied for lithium nickel cobalt manganese oxide (NMC) and lithium iron phosphate (LFP) technologies. Three possible strategies were identified to estimate degradation costs based on cell models. All three strategies were evaluated via simulations and validated by comparing the results with those obtained by other authors. One strategy was discarded because it overestimates costs, while the other two strategies give good results, and are suitable for estimating battery degradation costs in optimization problems that require deterministic models.


2021 ◽  
Vol 237 ◽  
pp. 02018
Author(s):  
Yu Tian ◽  
Zhengyuan Zhu ◽  
Shuangyu Liu ◽  
Dongpei Qian ◽  
Xiao Yan ◽  
...  

Lithium ion battery is the most widely used and reliable power source for electric vehicles. With the development of electric vehicles, the safety, energy density, life and reliability of lithium ion batteries have been continuously improved. However, in the field of vehicle power battery technology, battery monomers are combined in series and parallel to provide enough energy, but one of the major problems faced by group batteries is the consistency between battery monomers. Taking the capacity increment curve (IC curve) of lithium iron phosphate battery as the analysis tool, it is found that the characteristic peak of IC curve of different monomers in battery pack can reflect the relationship of monomer capacity. On this basis, the mathematical model is established, and the IC curve II peak characteristic point of a single cell are used as the reference to characterize the capacity of the single cell one by one. The results show that the method can be used in the normal charging process of the battery pack, and the capacity of the single cell in the battery pack can be characterized in real time during the whole life of the battery pack. It has certain research value for the ladder utilization and accurate management of battery pack.


2013 ◽  
Vol 579-580 ◽  
pp. 41-45
Author(s):  
Jing He ◽  
Ning Li ◽  
Chun Fu Gao ◽  
Yi Wen Luo ◽  
Xin Sheng He

Along with the thorough research of lithium ion battery, the lithium iron phosphate with the peridot structure becomes a new higher energy power battery anode material. But the charge and discharge mechanism of the modified lithium iron phosphate positive material did not get the unity understanding. In this paper, the carbon coating modification, metal ion doping, particle surfaces coated iron-phosphorus phase network and the nanoparticles of lithium iron phosphate were analyzed from the modified microstructure of the lithium ion phosphate batteries, so as to get the charge and discharge mechanism is the results of the active atoms and lithium ion embedded in the grid work and emergence in the layer structure, leading to the energy changes in lithium iron phosphate microstructure.


2013 ◽  
Vol 336-338 ◽  
pp. 413-416
Author(s):  
Ming Li ◽  
Yang Jiang ◽  
Jian Zhong Zheng ◽  
Xiao Xiao Peng

Reasonable modeling and simulation of power battery, optimization of the estimated power battery parameters that can contribute to power balance control efficiently, prolong the service life of the battery power and reduce the cost of electric vehicles. Using the lithium iron phosphate (LiFePO4) power battery that adopted in current electric vehicles widely as the research object, choose PNGV equivalent circuit battery model based on the analysis of the static and dynamic characteristics of the battery. An improved least square method to identify the model parameters was proposed, the matlab/simulink simulation results show the estimation error of the proposed method is less than 3%, and validate the proposed method is effective.


2020 ◽  
Vol 32 (12) ◽  
pp. 2982-2999
Author(s):  
Zolani Myalo ◽  
Chinwe Oluchi Ikpo ◽  
Assumpta Chinwe Nwanya ◽  
Miranda Mengwi Ndipingwi ◽  
Samantha Fiona Duoman ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 149
Author(s):  
Alexandra Holzer ◽  
Stefan Windisch-Kern ◽  
Christoph Ponak ◽  
Harald Raupenstrauch

The bottleneck of recycling chains for spent lithium-ion batteries (LIBs) is the recovery of valuable metals from the black matter that remains after dismantling and deactivation in pre‑treatment processes, which has to be treated in a subsequent step with pyrometallurgical and/or hydrometallurgical methods. In the course of this paper, investigations in a heating microscope were conducted to determine the high-temperature behavior of the cathode materials lithium cobalt oxide (LCO—chem., LiCoO2) and lithium iron phosphate (LFP—chem., LiFePO4) from LIB with carbon addition. For the purpose of continuous process development of a novel pyrometallurgical recycling process and adaptation of this to the requirements of the LIB material, two different reactor designs were examined. When treating LCO in an Al2O3 crucible, lithium could be removed at a rate of 76% via the gas stream, which is directly and purely available for further processing. In contrast, a removal rate of lithium of up to 97% was achieved in an MgO crucible. In addition, the basic capability of the concept for the treatment of LFP was investigated whereby a phosphorus removal rate of 64% with a simultaneous lithium removal rate of 68% was observed.


2012 ◽  
Vol 85 (6) ◽  
pp. 879-882 ◽  
Author(s):  
E. N. Kudryavtsev ◽  
R. V. Sibiryakov ◽  
D. V. Agafonov ◽  
V. N. Naraev ◽  
A. V. Bobyl’

2015 ◽  
Vol 1115 ◽  
pp. 531-534
Author(s):  
Siti Fauziah Toha

It is well known that the main constraint of electric vehicles (EVs) is the capabilities to supply efficient energy for driving-range that is comparable to petrol fueled vehicles. Moreover, a large number of batteries needed for EV contribute to heavy weight, poor durability and pricy total cost. In view of that, the need to prolong the battery lifetime, and use its full capacity, is of utmost importance. Therefore, an accurate battery model is a challenging first step to the overall problem soving chain. This paper presents a transfer function model prediction with nature-inspired approach for a Lithium iron phosphate battery. An Ant Colony Optimisation technique is used in search for accurate model with robust capability to adapt with different input current based on the New European Driving Cycle (NEDC) range. The model is further validated with autocorrelation and cross-correlation test and it is proven to give an error tolerance between the 95% confidence limit.


2006 ◽  
Vol 973 ◽  
Author(s):  
Shijun Wang ◽  
M. Stanley Whittingham

ABSTRACTThis study focusses on optimizing the parameters of the hydrothermal synthesis to produce iron phosphates for lithium ion batteries, with an emphasis on pure LiFePO4 with the olivine structure and compounds containing a higher iron:phosphate ratio. Lithium iron phosphate (LiFePO4) is a promising cathode candidate for lithium ion batteries due to its high theoretical capacity, environmentally benign and the low cost of starting materials. Well crystallized LiFePO4 can be successfully synthesized at temperatures above 150 °C. The addition of a reducing agent, such as hydrazine, is essential to minimize the oxidation of ferrous (Fe2+) to ferric (Fe3+) in the final compound. The morphology of LiFePO4 is highly dependent on the pH of the initial solution. This study also investigated the lipscombite iron phosphates of formula Fe1.33PO4OH. This compound has a log-like structure formed by Fe-O octahedral chains. The chains are partially occupied by the Fe3+ sites, and these iron atoms and some of the vacancies can be substituted by other cations. Most of the protons can be ion-exchanged for lithium, and the electrochemical capacity is much increased.


Sign in / Sign up

Export Citation Format

Share Document