scholarly journals Estimating Capital Cost of Small Scale LNG Carrier

Author(s):  
M. Fikri ◽  
Jooned Hendrarsakti ◽  
Kriyo Sambodho ◽  
Frengki Felayati ◽  
Nilam Octaviani ◽  
...  
Keyword(s):  
Author(s):  
Matthew Cowie ◽  
Xiaohong Liao ◽  
Reinhard Radermacher

There is a strong industry focus on packaged CHP systems for small scale applications where the design time for unique installations cannot be justified. Distributed generators such as microturbines, reciprocating engines and fuel cells can all now be purchased as CHP products. The development of these products will bring the energy, environmental and economic savings realized in larger applications to the smaller consumers. CHP systems traditionally operate most effectively and give the shortest payback when operated continuously at full output in a baseloading application. This is in conflict with a typical commercial building whose energy requirements vary extensively over daily, weekly and seasonal time periods. Just as CHP is not expected to supply the entire energy requirements of the industrial sector, so CHP should be looked at as merely part of the energy mix for the commercial sector as the capital cost of CHP equipment is typically higher compared to its alternatives and there are technical complications to supply a heating or cooling to power ratio away from design values. An economic CHP system must therefore have a capacity much lower than the peak load of the building to ensure high utilization of the system so that the larger capital investment can be recovered through energy cost savings as quickly as possible. In the absence of a year round continuous demand for either hot or chilled water a commercial CHP system must offer a diverse range of outputs so that the waste heat from the generator can be utilized as mush as possible particularly since the generator component is likely to dominate the capital cost of the installation. This paper proposes that the outdoor, or ventilation air stream into a building provides an excellent capacity match for CHP equipment packaged as a CHP Dedicated Outdoor Air System (CHPDOAS). Ventilation air has the largest temperature and humidity difference with indoor air of any stream of air in the building and so reduces the heat and mass transfer surface areas in the equipment. Also since the ventilation air is only a fraction of the total air flow rate that is being conditioned the CHP system can overcool the air in the summer or overheat the air in the winter and the effect is simply the reduce the cooling or heating workload of the conventional equipment since the ventilation air is then mixed with the bulk of the air remaining in the building before being conditioned. This means that the CHP system can run its generator for longer hours and at higher loads than would have been possible if the outlet conditions were set at space neutral or space supply conditions.


1983 ◽  
Vol 7 (6) ◽  
pp. 536-541 ◽  
Author(s):  
James A. Fay ◽  
Mark A. Smachlo

Author(s):  
Claudine Ellyin ◽  
Nickolas J. Themelis

The dominant technology for large Waste-to-Energy (WTE) facilities is combustion on a moving grate of “as-received” municipal solid wastes (MSW). However, there are circumstances where a low-capacity plant (<100,000 tons per year) is required. This study examines the technical, economic, and environmental aspects of some small-scale WTE technologies currently in operation. The Energos technology was developed in Norway, in order to provide relatively small communities with an economically efficient alternative to mass-burn incineration with equally low emissions to the atmosphere and flexibility in feedstock. All operating plants treat MSW plus additional streams of commercial or industrial wastes. Prior to thermal treatment, the materials are shredded in a high-torque, low-rpm shredder and ferrous metals are removed magnetically. The feedstock is partially oxidized on a moving grate in the gasification chamber where the fixed carbon is completely burnt off. The volatilized gases are fully combusted in a second chamber and the heat is transferred to a heat recovery system for steam generation. The Energos gasification technology is currently in operation at six plants in Norway, one in Germany, and one in the UK. As expected, the capital cost per ton of annual ton of capacity increases with decreasing plant capacity, while there is a linear relationship between energy recovery and capacity. Some other small-scale technologies are investigated in this study and will be reported at the NAWTEC meeting. Low capacity (<80,000 tons) WTE facilities require a relatively small footprint (1.5 to 2 acres; <1 hectare) and it is believed that these facilities can be built at a capital cost per ton that is as low, or lower, than that of large mass burn WTE facilities.


Author(s):  
Sugin Raj ◽  
K.V.Soundara Raja

Micro, Small and Medium Enterprises (MSMEs) sector has emerged as a highly vibrant and dynamic sector of the Indian economy over the last five decades. MSMEs not only play a crucial role in providing large employment opportunities at comparatively lower capital cost than large industries but also help in industrialization of rural and backward areas.  This paper assesses the growth and performance of MSMEs in Kanyakumari district on the number of enterprises, investment, employment generated and money value of the production. The performance of MSMEs assessed with the secondary data from 1984-85 to 2014-2015


2021 ◽  
Vol 13 (7) ◽  
pp. 3974
Author(s):  
Stergios Emmanouil ◽  
Jason Philhower ◽  
Sophie Macdonald ◽  
Fahad Khan Khadim ◽  
Meijian Yang ◽  
...  

In view of Ethiopia’s significant renewable energy (RE) potential and the dynamic interactions among the components of the Water–Energy–Food (WEF) Nexus, we attempted to incorporate solar and small-scale hydropower into the optimal design of an environmentally friendly microgrid with the primary goal of ensuring the sustainability of irrigation water pumping, while taking advantage of existing infrastructure in various small administrative units (kebele). Any additional generated energy would be made available to the community for other needs, such as lighting and cooking, to support health and food security and improve the general quality of life. The novelty of the study stems from the utilization of in situ social data, retrieved during fieldwork interviews conducted in the kebele of interest, to ascertain the actual needs and habits of the local people. Based on these combined efforts, we were able to formulate a realistic energy demand plan for climatic conditions typical of Sub-Saharan Africa agricultural communities and analyze four different scenarios of the microgrid’s potential functionality and capital cost, given different tolerance levels of scheduled outages. We demonstrated that the RE-based microgrid would be socially and environmentally beneficial and its capital cost sensitive to the incorporation of individual or communal machines and appliances. Ultimately, the social impact investigation revealed the design would be welcomed by the local community, whose members already implement tailor-made solutions to support their agricultural activities. Finally, we argue that extended educational programs and unambiguous policies should be in place before any implementation to ensure the venture’s sustainability and functionality.


2019 ◽  
Vol 49 ◽  
pp. 215-224
Author(s):  
Romanos Ioannidis ◽  
Theano Iliopoulou ◽  
Christina Iliopoulou ◽  
Loukas Katikas ◽  
Angeliki Petsou ◽  
...  

Abstract. We investigate the application of a solar-powered bus route to a small-scale transportation system, as such of a university campus. In particular, we explore the prospect of replacing conventional fossil fuel buses by electric buses powered by solar energy and electricity provided by the central grid. To this end, we employ GIS mapping technology to estimate the solar radiation at the university campus and, accordingly, we investigate three different scenarios for harnessing the available solar power: (1) solar panels installed on the roof of bus stop shelters, (2) solar panels installed at an unused open space in the university, and (3) solar roads, i.e. roads constructed by photovoltaic (PV) materials. For each of the three scenarios, we investigate the optimal technical configuration, the resulting energy generation, as well as the capital cost for application in the case of NTUA campus in Athens (Greece). The preliminary feasibility analysis showcases that all three scenarios contribute to satisfying transportation demand, proportionately to their size, with scenario (2) presenting the lowest capital cost in relation to energy generation. Therefore, we further explore this scenario by simulating its daily operation including the actions of buying and selling energy to the central grid, when there is energy deficit or surplus, respectively. A sensitivity analysis is carried out in order to ascertain the optimal size of the solar panel installation in relation to profit and reliability. Overall, results indicate that, albeit the high capital costs, solar-powered transportation schemes present a viable alternative for replacing conventional buses at the studied location, especially considering conventional PV panels. We note that present results heavily depend on the choice of capacity factors of PV materials, which differ among technologies. Yet, as capacity factors of PV panels are currently increasing, the studied schemes might be more promising in the future.


Processes ◽  
2018 ◽  
Vol 6 (7) ◽  
pp. 91 ◽  
Author(s):  
Matthew Palys ◽  
Alon McCormick ◽  
E. Cussler ◽  
Prodromos Daoutidis

Synthetic ammonia produced from fossil fuels is essential for agriculture. However, the emissions-intensive nature of the Haber–Bosch process, as well as a depleting supply of these fossil fuels have motivated the production of ammonia using renewable sources of energy. Small-scale, distributed processes may better enable the use of renewables, but also result in a loss of economies of scale, so the high capital cost of the Haber–Bosch process may inhibit this paradigm shift. A process that operates at lower pressure and uses absorption rather than condensation to remove ammonia from unreacted nitrogen and hydrogen has been proposed as an alternative. In this work, a dynamic model of this absorbent-enhanced process is proposed and implemented in gPROMS ModelBuilder. This dynamic model is used to determine optimal designs of this process that minimize the 20-year net present cost at small scales of 100 kg/h to 10,000 kg/h when powered by wind energy. The capital cost of this process scales with a 0.77 capacity exponent, and at production scales below 6075 kg/h, it is less expensive than the conventional Haber–Bosch process.


2019 ◽  
Vol 42 ◽  
Author(s):  
William Buckner ◽  
Luke Glowacki

Abstract De Dreu and Gross predict that attackers will have more difficulty winning conflicts than defenders. As their analysis is presumed to capture the dynamics of decentralized conflict, we consider how their framework compares with ethnographic evidence from small-scale societies, as well as chimpanzee patterns of intergroup conflict. In these contexts, attackers have significantly more success in conflict than predicted by De Dreu and Gross's model. We discuss the possible reasons for this disparity.


2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


Sign in / Sign up

Export Citation Format

Share Document