scholarly journals Latent Space Conditioning on Generative Adversarial Networks

Author(s):  
Ricard Durall ◽  
Kalun Ho ◽  
Franz-Josef Pfreundt ◽  
Janis Keuper
2021 ◽  
Author(s):  
Van Bettauer ◽  
Anna CBP Costa ◽  
Raha Parvizi Omran ◽  
Samira Massahi ◽  
Eftyhios Kirbizakis ◽  
...  

We present deep learning-based approaches for exploring the complex array of morphologies exhibited by the opportunistic human pathogen C. albicans. Our system entitled Candescence automatically detects C. albicans cells from Differential Image Contrast microscopy, and labels each detected cell with one of nine vegetative, mating-competent or filamentous morphologies. The software is based upon a fully convolutional one-stage object detector and exploits a novel cumulative curriculum-based learning strategy that stratifies our images by difficulty from simple vegetative forms to more complex filamentous architectures. Candescence achieves very good performance on this difficult learning set which has substantial intermixing between the predicted classes. To capture the essence of each C. albicans morphology, we develop models using generative adversarial networks and identify subcomponents of the latent space which control technical variables, developmental trajectories or morphological switches. We envision Candescence as a community meeting point for quantitative explorations of C. albicans morphology.


2019 ◽  
Vol 9 (18) ◽  
pp. 3856 ◽  
Author(s):  
Dan Zhao ◽  
Baolong Guo ◽  
Yunyi Yan

Over the last few years, image completion has made significant progress due to the generative adversarial networks (GANs) that are able to synthesize photorealistic contents. However, one of the main obstacles faced by many existing methods is that they often create blurry textures or distorted structures that are inconsistent with surrounding regions. The main reason is the ineffectiveness of disentangling style latent space implicitly from images. To address this problem, we develop a novel image completion framework called PIC-EC: parallel image completion networks with edge and color maps, which explicitly provides image edge and color information as the prior knowledge for image completion. The PIC-EC framework consists of the parallel edge and color generators followed by an image completion network. Specifically, the parallel paths generate edge and color maps for the missing region at the same time, and then the image completion network fills the missing region with fine details using the generated edge and color information as the priors. The proposed method was evaluated over CelebA-HQ and Paris StreetView datasets. Experimental results demonstrate that PIC-EC achieves superior performance on challenging cases with complex compositions and outperforms existing methods on evaluations of realism and accuracy, both quantitatively and qualitatively.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Wei Chen ◽  
Mark Fuge

Abstract Real-world designs usually consist of parts with interpart dependencies, i.e., the geometry of one part is dependent on one or multiple other parts. We can represent such dependency in a part dependency graph. This paper presents a method for synthesizing these types of hierarchical designs using generative models learned from examples. It decomposes the problem of synthesizing the whole design into synthesizing each part separately but keeping the interpart dependencies satisfied. Specifically, this method constructs multiple generative models, the interaction of which is based on the part dependency graph. We then use the trained generative models to synthesize or explore each part design separately via a low-dimensional latent representation, conditioned on the corresponding parent part(s). We verify our model on multiple design examples with different interpart dependencies. We evaluate our model by analyzing the constraint satisfaction performance, the synthesis quality, the latent space quality, and the effects of part dependency depth and branching factor. This paper’s techniques for capturing dependencies among parts lay the foundation for learned generative models to extend to more realistic engineering systems where such relationships are widespread.


Author(s):  
Bidisha Samanta ◽  
Sharmila Reddy ◽  
Hussain Jagirdar ◽  
Niloy Ganguly ◽  
Soumen Chakrabarti

Code-switching, the interleaving of two or more languages within a sentence or discourse is pervasive in multilingual societies. Accurate language models for code-switched text are critical for NLP tasks. State-of-the-art data-intensive neural language models are difficult to train well from scarce language-labeled code-switched text. A potential solution is to use deep generative models to synthesize large volumes of realistic code-switched text. Although generative adversarial networks and variational autoencoders can synthesize plausible monolingual text from continuous latent space, they cannot adequately address code-switched text, owing to their informal style and complex interplay between the constituent languages. We introduce VACS, a novel variational autoencoder architecture specifically tailored to code-switching phenomena. VACS encodes to and decodes from a two-level hierarchical representation, which models syntactic contextual signals in the lower level, and language switching signals in the upper layer. Sampling representations from the prior and decoding them produced well-formed, diverse code-switched sentences. Extensive experiments show that using synthetic code-switched text with natural monolingual data results in significant (33.06\%) drop in perplexity.


Author(s):  
Yuxuan Han ◽  
Jiaolong Yang ◽  
Ying Fu

Recent works have shown that a rich set of semantic directions exist in the latent space of Generative Adversarial Networks (GANs), which enables various facial attribute editing applications. However, existing methods may suffer poor attribute variation disentanglement, leading to unwanted change of other attributes when altering the desired one. The semantic directions used by existing methods are at attribute level, which are difficult to model complex attribute correlations, especially in the presence of attribute distribution bias in GAN's training set. In this paper, we propose a novel framework (IALS) that performs Instance-Aware Latent-Space Search to find semantic directions for disentangled attribute editing. The instance information is injected by leveraging the supervision from a set of attribute classifiers evaluated on the input images. We further propose a Disentanglement-Transformation (DT) metric to quantify the attribute transformation and disentanglement efficacy and find the optimal control factor between attribute-level and instance-specific directions based on it. Experimental results on both GAN-generated and real-world images collectively show that our method outperforms state-of-the-art methods proposed recently by a wide margin. Code is available at https://github.com/yxuhan/IALS.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 688
Author(s):  
Sung-Wook Park ◽  
Jun-Ho Huh ◽  
Jong-Chan Kim

In the field of deep learning, the generative model did not attract much attention until GANs (generative adversarial networks) appeared. In 2014, Google’s Ian Goodfellow proposed a generative model called GANs. GANs use different structures and objective functions from the existing generative model. For example, GANs use two neural networks: a generator that creates a realistic image, and a discriminator that distinguishes whether the input is real or synthetic. If there are no problems in the training process, GANs can generate images that are difficult even for experts to distinguish in terms of authenticity. Currently, GANs are the most researched subject in the field of computer vision, which deals with the technology of image style translation, synthesis, and generation, and various models have been unveiled. The issues raised are also improving one by one. In image synthesis, BEGAN (Boundary Equilibrium Generative Adversarial Network), which outperforms the previously announced GANs, learns the latent space of the image, while balancing the generator and discriminator. Nonetheless, BEGAN also has a mode collapse wherein the generator generates only a few images or a single one. Although BEGAN-CS (Boundary Equilibrium Generative Adversarial Network with Constrained Space), which was improved in terms of loss function, was introduced, it did not solve the mode collapse. The discriminator structure of BEGAN-CS is AE (AutoEncoder), which cannot create a particularly useful or structured latent space. Compression performance is not good either. In this paper, this characteristic of AE is considered to be related to the occurrence of mode collapse. Thus, we used VAE (Variational AutoEncoder), which added statistical techniques to AE. As a result of the experiment, the proposed model did not cause mode collapse but converged to a better state than BEGAN-CS.


Sign in / Sign up

Export Citation Format

Share Document