scholarly journals Numerical Study of the Deformation Characteristics for Circle Shaped and Square Shaped PET Bottles under Compressive Loads

2014 ◽  
Vol 23 (1) ◽  
pp. 5-9
Author(s):  
S.H. Cho ◽  
C.H. Kwon ◽  
G.M. Park ◽  
Y.B. Ko
2011 ◽  
Vol 255-260 ◽  
pp. 1867-1872
Author(s):  
Jing Hua Qi ◽  
Zhen Nan Zhang ◽  
Xiu Run Ge

In order to model the mechanical behavior of joints efficiently, a thin-layer tri-node joint element is constructed. The stiffness matrix of the element is derived in the paper. For it shares the common nodes with the original tri-node triangle element, the tri-node joint element can be applied to model the crack propagation without remeshing or mesh adjustment. Another advantage is that the cracked body is meshed without consideration of its geometry integrity and existence of the joints or pre-existed crack in the procedure of mesh generation, and then the triangular element intersected by the crack or joint is automatically transformed into the tri-node joint element to represent pre-existed cracks. These make the numerical simulation of crack propagation highly convenient and efficient. After CZM is chosen to model the crack tip, the mixed- energy simple criterion is used to determine whether the element is intersected by the extended crack or not, the extended crack is located in the model. By modeling the marble plates with two edge cracks subjected to the uniaxial compressive loads, it is shown that the numerical results are in good agreement with the experimental results, which suggests that the present method is valid and feasible in modeling rock crack propagation.


Author(s):  
Cun Wang ◽  
Tao Zhang ◽  
Cheng Zhao ◽  
Jian Pu

A three dimensional numerical model of a practical planar solid oxide fuel cell (SOFC) stack based on the finite element method is constructed to analyze the thermal stress generated at different uniform temperatures. Effects of cell positions, different compressive loads, and coefficient of thermal expansion (CTE) mismatch of different SOFC components on the thermal stress distribution are investigated in this work. Numerical results indicate that the maximum thermal stress appears at the corner of the interface between ceramic sealants and cells. Meanwhile the maximum thermal stress at high temperature is significantly larger than that at room temperature (RT) and presents linear growth with the increase of operating temperature. Since the SOFC stack is under the combined action of mechanical and thermal loads, the distribution of thermal stress in the components such as interconnects and ceramic sealants are greatly controlled by the CTE mismatch and scarcely influenced by the compressive loads.


2019 ◽  
Vol 21 (5) ◽  
pp. 1700-1725 ◽  
Author(s):  
Yeoshua Frostig ◽  
George Kardomateas

The thermal and the thermo-mechanical responses of a sandwich panel with a compliant core are investigated within the framework of the extended high-order approach where the core properties are temperature dependent or independent. Loads schemes include thermal field within temperature working range simultaneous with in-plane compressive loads applied to the core only and to the face sheets and core in the form of the uniform end—shortening of edge of panel. The mathematical formulations use the extended high-order sandwich panel theory approach that takes into account the in-plane rigidity of the core and uses the deformation patterns of the high-order sandwich panel theory. The linear and nonlinear field equations along with the appropriate boundary conditions are presented. A numerical study is conducted, and it investigates the thermal response with temperature independent and temperature dependent mechanical properties of the core as well as the thermo-mechanical response due to in-plane compressive loads. The results include displacements, stress resultants, and stress at critical locations along the panel as well as equilibria curves. They reveal that, in general, the panel with temperature independent properties response remains almost linear while with temperature dependent ones it takes a general nonlinear response. The addition of an external mechanical load changes the response from a linear/nonlinear one that may be allowable stress controlled to a case where loss of stability occurs.


2009 ◽  
Vol 413-414 ◽  
pp. 691-698 ◽  
Author(s):  
Ya Yue Pan ◽  
Shui Ying Zheng ◽  
Xiao Hong Pan

Nowadays, polyethylene terephthalate (PET) bottles have been increasingly used as drink containers. They are usually manufactured by a stretch-blow molding process. The improper parameters set in the stretch blow molding process may lead to many defects in the stretch-blow bottle. Finite Element (FE) simulations of the forming process were performed in this paper. The influences of the technological parameters, such as the balance between stretching and blowing rate, the movement of the stretch rod and the inflation pressure, were studied. As a result, the defects, such as over-thin area, cracking and deformation, can be predicted by this method. Especially, it is shown that the cracking in the bottom of products may result from the improper values of the dwell time and the stretch rate. The trends shown by the simulation results are in good agreement with the experimental results. The method can be applied to predict the probable defects, assess the structural properties, and optimize the processing parameters of the stretch blow molding process.


Sign in / Sign up

Export Citation Format

Share Document