Comparison of in Vitro Vasculogenesis Potential between ASCs with BM-MSCs

2021 ◽  
Vol 11 (5) ◽  
pp. 362-378
Author(s):  
Ani Oranda Panjaitan ◽  
Dewi Sukmawati ◽  
Ria Anggraeni

Tube formation assay is the most widely used method as a vasculogenesis/ angiogenesis test in vitro. Mesenchymal stem cells (MSCs) are multipotent adult cells. The paracrine effect of MSCs on neovascularization is well known. In general, MSCs do not express CD34 hematopoietic surface marker, but according to some experts, bone marrow mesenchymal stem cells (BM-MSCs) express CD34 in vivo and lose their expression when they are cultured in vitro, while adipose-derived stem cells (ASCs) still have CD34 expression in the early passages when cultured in vitro. BM-MSCs are the most widely used MSC, but ASCs are also used in stem cell therapy and tissue engineering for angiogenesis purposes. Until now, the potential of vasculogenesis between ASCs and BM-MSCs is still unclear. Expression of CD34 is also unknown whether affecting the quality of tube formation. This study wanted to compare the potential of vasculogenesis between ASC and BM-MSCs through tube formation test and CD34 expression.Measurements of vasculogenesis quality showed higher tube length, number of loopsand mean number of branch points on BM-MSC. Both BM-MSCs and ASCs showed low CD34 levels.BM-MSCs showed better tube formation ability compared with ASCs. No association was found between CD34 levels and MSC vasculogenesis capability. Key words: ASCs, BM-MSCs, CD34, matrigel, tube formation.

2019 ◽  
Vol 7 (1) ◽  
pp. 362-372 ◽  
Author(s):  
Shuhao Liu ◽  
Yang Liu ◽  
Libo Jiang ◽  
Zheng Li ◽  
Soomin Lee ◽  
...  

BMP-2-induced migration of BMSCs can be inhibited by silencing CDC42 in vitro and in vivo.


2021 ◽  
Author(s):  
meng li ◽  
ning yang ◽  
li hao ◽  
wei zhou ◽  
lei li ◽  
...  

Abstract ObjectivesSteroid-induced osteoporosis (SIOP) is a secondary osteoporosis, which is a systemic bone disease characterized by low bone mass, bone microstructure damage, increased bone fragility, and easy fracture. However, the specific mechanism remains unclear. Glucocorticoid-induced death of osteoblasts and bone marrow mesenchymal stem cells (BMSCs) is an important factor in SIOP. Ferroptosis is an iron-dependent programmed cell death that differs from apoptosis, cell necrosis, and autophagy, which can be induced by many factors. Herein, we aimed to explore whether glucocorticoids (GCs) cause ferroptosis in BMSCs and determine possible treatment pathways and mechanisms of action. Melatonin (MT), a hormone secreted by the pineal gland, displays strong antioxidant abilities to scavenge free radicals and alleviates ferroptosis in many tissues and organs. MethodsIn this study, we used high-dose dexamethasone (DEX) to observe whether glucocorticoids induced ferroptosis in BMSCs. We then assessed whether MT can inhibit the ferroptotic pathway, thereby providing early protection against GC-induced SIOP, and investigated the signaling pathways involved.ResultsIn vitro experiments showed that MT intervention significantly improved GC-induced ferroptosis in BMSCs and significantly improved SIOP in vivo. Pathway analysis showed that MT improves ferroptosis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. MT upregulates expression of PI3K, which is an important regulator of ferroptosis resistance. PI3K activators mimic the anti-ferroptosis effect of MT, but after blocking the PI3K pathway, the effect of MT is weakened. Obviously, MT can protect against SIOP induced by GC. Notably, even after GC-induced ferroptosis begins, MT can confer protection against SIOP. ConclusionOur research confirms that GC-induced ferroptosis is closely related to SIOP. Melatonin can inhibit ferroptosis by activating the PI3K-AKT-mTOR signaling pathway, thereby reducing the occurrence of steroid-induced osteoporosis. Therefore, MT may provide a novel strategy for preventing and treating SIOP.


2020 ◽  
Vol 8 (21) ◽  
pp. 4680-4693
Author(s):  
Jirong Yang ◽  
Yumei Xiao ◽  
Zizhao Tang ◽  
Zhaocong Luo ◽  
Dongxiao Li ◽  
...  

The different negatively charged microenvironments of collagen hydrogels affect the protein adsorption, cell morphology, and chondrogenic differentiation of BMSCs in vitro and in vivo.


Nanomedicine ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 273-288 ◽  
Author(s):  
Chun Liu ◽  
Yun Li ◽  
Zhijian Yang ◽  
Zhiyou Zhou ◽  
Zhihao Lou ◽  
...  

The effectiveness of mesenchymal stem cells (MSC) in the treatment of cartilage diseases has been demonstrated to be attributed to the paracrine mechanisms, especially the mediation of exosomes. But the exosomes derived from unsynchronized MSCs may be nonhomogeneous and the therapeutic effect varies between samples. Aim: To produce homogeneous and more effective exosomes for the regeneration of cartilage. Materials & methods: In this study we produced specific exosomes from bone marrow MSCs (BMSC) through kartogenin (KGN) preconditioning and investigated their performance in either in vitro or in vivo experiments. Results & conclusion: The exosomes derived from KGN-preconditioned BMSCs (KGN-BMSC-Exos) performed more effectively than the exosomes derived from BMSCs (BMSC-Exos). KGN preconditioning endowed BMSC-Exos with stronger chondral matrix formation and less degradation.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ran Zhang ◽  
Xuewen Li ◽  
Yao Liu ◽  
Xiaobo Gao ◽  
Tong Zhu ◽  
...  

Biocompatible scaffolding materials play an important role in bone tissue engineering. This study sought to develop and characterize a nano-hydroxyapatite (nHA)/collagen I (ColI)/multi-walled carbon nanotube (MWCNT) composite scaffold loaded with recombinant bone morphogenetic protein-9 (BMP-9) for bone tissue engineering by in vitro and in vivo experiments. The composite nHA/ColI/MWCNT scaffolds were fabricated at various concentrations of MWCNTs (0.5, 1, and 1.5% wt) by blending and freeze drying. The porosity, swelling rate, water absorption rate, mechanical properties, and biocompatibility of scaffolds were measured. After loading with BMP-9, bone marrow mesenchymal stem cells (BMMSCs) were seeded to evaluate their characteristics in vitro and in a critical sized defect in Sprague-Dawley rats in vivo. It was shown that the 1% MWCNT group was the most suitable for bone tissue engineering. Our results demonstrated that scaffolds loaded with BMP-9 promoted differentiation of BMMSCs into osteoblasts in vitro and induced more bone formation in vivo. To conclude, nHA/ColI/MWCNT scaffolds loaded with BMP-9 possess high biocompatibility and osteogenesis and are a good candidate for use in bone tissue engineering.


2014 ◽  
Vol 33 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Koji Otabe ◽  
Hiroyuki Nakahara ◽  
Akihiko Hasegawa ◽  
Tetsuya Matsukawa ◽  
Fumiaki Ayabe ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148777 ◽  
Author(s):  
Yusuke Nakagawa ◽  
Takeshi Muneta ◽  
Koji Otabe ◽  
Nobutake Ozeki ◽  
Mitsuru Mizuno ◽  
...  

2017 ◽  
Vol 5 (13) ◽  
pp. 2468-2482 ◽  
Author(s):  
Wei Wei ◽  
Jipeng Li ◽  
Shuo Chen ◽  
Mingjiao Chen ◽  
Qing Xie ◽  
...  

Tissue engineering technology that adopts mesenchymal stem cells combined with scaffolds presents a promising strategy for tissue regeneration.


2021 ◽  
Author(s):  
Hui Hu ◽  
xiaowei Hu ◽  
lin Li ◽  
Jingjing Gu ◽  
Yan Fang ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) transplantation is a potential clinical therapy for cerebral ischemia. The therapeutic effects of MSCs primarily depends on the paracrine action by releasing exosomes (Exos). Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) could modulate target cell functions by transferring microRNAs (miRs) cargo. In this study, we aimed to investigate whether BMSC-Exos could promote angiogenesis via transfer of miR-21-5p after cerebral ischemia. Methods BMSC-Exos were isolated from conditioned medium of BMSCs by differential ultracentrifugation, and confirmed by transmission electron microscopy, nanoparticle tracking analysis, and western blot analysis. In mice with middle cerebral artery occlusion (MCAO), the neurological function was evaluated by Zea Longa’s method, and the infarct volume and microvessel density were detected by TTC staining and vWF immunofluorescence staining, respectively. The proangiogenic effects of BMSC-Exos were assessed via proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro assays. The miR-21-5p expression was detected by qRT-PCR. The expression levels of VEGF, VEGFR2, Ang-1, and Tie-2 were determined by western blot. Results BMSC-Exos significantly improved neurological function and reduced infract volume after cerebral ischemia. Moreover, BMSC-Exos significantly upregulated the microvessel density and the expression levels of proangiogenic proteins VEGF, VEGFR2, Ang-1 and Tie-2 in the ischemic boundary region. MiR-21-5p expression was also dramatically increased after cerebral ischemia. In vitro assays revealed that BMSC-Exos enhanced HUVECs functions including proliferation, migration and tube formation, as well as increasing the expression of VEGF and VEGFR2. However, these proangiogenic effects of BMSC-Exos on HUVECs were reversed by miR-21-5p inhibitor. Conclusion Our study indicated that BMSC-Exos could promote angiogenesis and neurological function recovery via transfer of miR-21-5p. Therefore, the application of miR-21-5p-loaded BMSC-Exos might be an attractive treatment strategy of cerebral ischemia.


2020 ◽  
Author(s):  
Ilona Uzieliene ◽  
Edvardas Bagdonas ◽  
Kazuto Hoshi ◽  
Tomoaki Sakamoto ◽  
Atsuhiko Hikita ◽  
...  

Abstract Background: Due to its low capacity for self-repair, articular cartilage is highly susceptible to damage and deterioration, which leads to the development of degenerative joint diseases such as osteoarthritis. Menstrual blood-derived mesenchymal stem cells (MenSCs) are much less characterized compared to bone marrow mesenchymal stem cells (BMMSCs). However, MenSCs seem an attractive alternative to classical BMMSCs due to ease of access and broader differentiation capacity. The aim of this study was to evaluate chondrogenic differentiation potential of MenSCs and BMMSCs stimulated with transforming growth factor β (TGF-β3) and activin A, member of the TGF-β superfamily of proteins.Methods: MenSCs (n=6) and BMMSCs (n=5) were isolated from different healthy donors. Expression of cell surface markers CD90, CD73, CD105, CD44, CD45, CD14, CD36, CD55, CD54, CD63, CD106, CD34, CD10, Notch1 was analysed by flow cytometry. Cell proliferation capacity was determined using CCK-8 proliferation kit. Adipogenic differentiation capacity was evaluated according to Oil-Red staining, osteogenic differentiation - Alizarin Red staining. Chondrogenic differentiation (Activin A and TGF-β3 stimulation) was induced in vitro and in vivo (subcutaneous scaffolds in nude BALB/c mice) and investigated by histologically and by expression of chondrogenic genes (collagen type II, aggrecan). Activin A protein production was evaluated by ELISA.Results: MenSCs exhibited a higher proliferation rate, as compared to BMMSCs, and a different expression profile of several cell surface markers. Activin A stimulated collagen type II gene expression and glycosaminoglycan synthesis in TGF-β3 treated MenSCs but not in BMMSCs, both in vitro and in vivo, although the effects of TGF-β3 alone were more pronounced in BMMSCs in vitro. Conclusion: These data suggest that activin A exerts differential effects on the induction of chondrogenic differentiation in MenSCs vs. BMMSCs, which implies that different mechanisms of chondrogenic regulation are activated in these cells. Following further optimisation of differentiation protocols and the choice of growth factors, potentially including activin A, MenSCs may turn out to be a promising population of stem cells for the development of cell-based therapies with the capacity to stimulate cartilage repair and regeneration.Trial registration: Not applicable.


Sign in / Sign up

Export Citation Format

Share Document