scholarly journals PHYSICOCHEMICAL COMPOSITION AND HEAVY METAL DETERMINATION OF SELECTED INDUSTRIAL EFFLUENTS OF IBADAN CITY, NIGERIA

2021 ◽  
Vol 2 (2) ◽  
pp. 58-66
Author(s):  
O. O. Okoyomon ◽  
H. A. Kadir ◽  
Z. U. Zango ◽  
U. Saidu ◽  
S. A. Nura

The rise of heavy metal presence in environmental waters has made it necessary to continuously examine industrial effluents to maintain the quality of the environment. The focus of this study is centered on determining the heavy metal concentrations and some physicochemical parameters in twelve industrial effluents samples collected from various locations across Ibadan city. A composite sampling method was utilized to obtain representative effluent samples of the 12 Industries (categorized into food, beverage, tobacco, plastic, Pharmaceutical, chemical, and allied industries) and borehole samples from around the city were used as control. The effluent samples were digested by nitric acid (HNO3) and analyzed for cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), and lead (Pb) using the atomic absorption spectrophotometric method (AAS). Some physicochemical parameters such as pH (Jenway 3510 pH meter), total dissolved solids (Hanna TDS meter), total suspended solids, and phosphate were determined. The heavy metal mean values were compared with Federal Environment Protection Agency (FEPA) and the United States Environmental Protection Agency (USEPA) standard values shown in table 1. The mean concentrations of heavy metal in the industrial effluent samples were Cu (0.32 mg/L), Pb (0.037 mg/L), Ni (0.50 mg/L), Co (0.037 mg/L), Cd (0.016 mg/L), Fe (54.0 mg/L) and Cr (0.44 mg/L). It was found that Chemical and allied industries have the highest concentration for metals such as Fe (128 mg/L), Ni (1.1 mg/L), and Cu (0.27 mg/L) while Cr (0.0067 mg/L) and Co (0.08 mg/L) were obtained in the Food/Beverage and pharmaceutical industries respectively. Conclusively, the industries around the Ibadan city stand as potential contributors to pollution, hence a periodical and continuous assessment effort are recommended.

Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


1989 ◽  
Vol 21 (6-7) ◽  
pp. 685-698
Author(s):  
J. J. Convery ◽  
J. F. Kreissl ◽  
A. D. Venosa ◽  
J. H. Bender ◽  
D. J. Lussier

Technology transfer is an important activity within the ll.S. Environmental Protection Agency. Specific technology transfer programs such as the activities of the Center for Environmental Research Information, the Innovative and Alternative Technology Program, as well as the Small Community Outreach Program are used to encourage the utilization of cost-effective municipal pollution control technology. Case studies of three technologies including a plant operations diagnostic/remediation methodology, alternative sewer technologies and ultraviolet disinfection are presented. These case studies are presented retrospectively in the context of a generalized concept of how technology flows from science to utilization which was developed in a study by Allen (1977). Additional insights from this study are presented on the information gathering characteristics of engineers and scientists which may be useful in designing technology transfer programs. The recognition of the need for a technology or a deficiency in current practice are important stimuli other than technology transfer for accelerating the utilization of new technology.


2021 ◽  
Vol 1 (2) ◽  
pp. 50-58
Author(s):  
Ikenna Uzonu

This work examined the effects of industrial effluents on surface water used for vegetable irrigation in Kano City of Kano State. As the population of Kano increases, more demand is placed on these industries for products thus leading to the generation of large volumes of effluents that are discharged directly into nearby streams without treatment. The usage of this surface water for vegetable irrigation by a significant number of vegetable farmers is a matter of major concern due to the presence of pollutants. Some of the field measurements were carried out insitu while others were taken to the laboratory for analysis. Groundwater samples were taken from a borehole and two hand-dug wells while surface water was taken from point of discharge and two other points along the Challawa River which is the main source of water for vegetable irrigation. Composite soil samples were taken from four points within the vegetable farms. The Federal Environmental Protection Agency and the Federal Ministry of Environment standards were used as baseline standards for limits. Results show that presence of Fe, Pb, Mn, Cr and Cd were found to be above the FMEnv limits in the soil, the presence of SO4, Cu and K were also found to be above the FMEnv limits as well in groundwater while BOD, NO2 and Cr were above the FEPA limit for surface water. Some of the recommendations include constant monitoring for the presence of heavy metals in soils and irrigation water and that the need for the construction of both primary and secondary treatment plants has become essential.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
James L Crooks ◽  
Wayne Cascio ◽  
Madelyn Percy ◽  
Jeanette Reyes ◽  
Lucas Neas ◽  
...  

Introduction: Extreme weather events such as dust storms are predicted to become more frequent as the global climate warms through the 21st century. Studies of Asian, Saharan, Arabian, and Australian dust storms have found associations with cardiovascular and total non-accidental mortality and hospitalizations for stroke. However, the only population-level epidemiological work on dust storms in the United States was focused on a single small metropolitan area (Spokane, WA), and it is uncertain whether its null results are representative of the country as a whole. Hypothesis: Dust storms in the United States are associated with daily cardiovascular mortality. Methods: Dust storm incidence data (N=141), including date and approximate location, as well as meteorological station observations, were taken from the U.S. National Weather Service. County-level mortality data for the years 1993-2005 were acquired from the National Center for Health Statistics. Ambient particulate matter monitor concentrations were obtained from the U.S. Environmental Protection Agency. Inference was performed used conditional logistic regression models under a case-crossover design while accounting for the nonlinear effect of temperature. Results: We found a 9.5% increase in cardiovascular mortality at a two-day lag (95% CI: [0.31%,19.5%], p = 0.042). The results were robust to adjusting for heat waves and ambient particulate matter concentrations. Analysis of storms occurring only on days with <0.1 inches of precipitation strengthened these results and in addition yielded a mean daily increase of 4.0% across lags 0-5 (95% CI: [0.07%,20.8%], p = 0.046). In Arizona, the U.S. state with the largest number of storms, we observed a 13.0% increase at a three-day lag (CI: [0.40%,27.1%], p = 0.043). Conclusions: Dust storms in the U.S. are associated with increases in lagged cardiovascular mortality. This has implications for the development of public health advisories and suggests that further public health interventions may be needed. Disclaimer: This work does not represent official U.S. Environmental Protection Agency policy.


1990 ◽  
Vol 22 (12) ◽  
pp. 239-247
Author(s):  
Philip Wolstenholme

To prepare dried municipal sludge material for use by the fertilizer industry, Ocean County Utilities Authority, New Jersey needed a process to increase the size of their sludge particles to between 1 and 3 millimetres. Several processes were evaluated during the planning and design phases of the project. The most cost-effective and reliable process was pressure agglomeration by compaction with a roll press, followed by granulation and screening of the compacted material. This process was tested with a sample of the Authority's digested sludge, which had been dried in a laboratory-scale evaporator. Fullscale compaction and granulation test equipment was used at a laboratory in West Germany to confirm the feasibility of the process and to develop data for the design of the project. As a result of its “innovative” approach to sludge processing, the United States Environmental Protection Agency (EPA) qualified this $60 million project for special funding. The project is nearing construction completion and due to be commissioned in spring of 1990.


Author(s):  
Constance J. Doyle

Triage and rescue of casualties from accidents involving hazardous materials is a challenge for many emergency medical services (EMS) personnel. With very toxic materials, the untrained and unprepared rescuer may become a victim. In addition, few hospitals in the United States have decontamination units attached to their emergency departments and emergency department personnel may become exposed if the casualty is not decontaminated. Many environmental cleanup teams, including the U.S. Environmental Protection Agency (EPA) team, are well trained in materials handling but are not immediately available when a hazardous materials spill with personal injuries occurs.


Sign in / Sign up

Export Citation Format

Share Document