scholarly journals Stellar spectra analysis of giant stars: ARCTURUS

Author(s):  
Maria Rah

In this study, we analyzed the evolved red giant ARCTURUS using high-resolution spectroscopy that was taken by HARPS. The other names of this star is α Boo - Arcturus - HR 5340 - HD 124897 - HIP 69673. This evolved (log g = 1.66 dex) star shows low metallicity nature ([Fe/H] = -0.52), which could be employed to study the chemical evolution of the early universe.

2018 ◽  
Vol 614 ◽  
pp. A146 ◽  
Author(s):  
B. Dias ◽  
I. Araya ◽  
J. P. Nogueira-Cavalcante ◽  
L. Saker ◽  
A. Shokry

Context. The origin of the globular cluster (GC) NGC 3201 is under debate. Its retrograde orbit points to an extragalactic origin, but no further chemical evidence supports this idea. Light-element chemical abundances are useful to tag GCs and can be used to shed light on this discussion. Aims. Recently it was shown that the CN and CH indices are useful to identify GCs that are anomalous to those typically found in the Milky Way. A possible origin of anomalous clusters is the merger of two GCs and/or the nucleus of a dwarf galaxy. We aim to derive CN and CH band strengths for red giant stars in NGC3201 and compare these with photometric indices and high-resolution spectroscopy and discuss in the context of GC chemical tagging. Methods. We measure molecular band indices of S(3839) and G4300 for CN and CH, respectively from low-resolution spectra of red giant stars. Gravity and temperature effects are removed. Photometric indices are used to indicate further chemical information on C+N+O or s-process element abundances that are not derived from low-resolution spectra. Results. We found three groups in the CN–CH distribution. A main sequence (S1), a secondary less-populated sequence (S2), and a group of peculiar (pec) CN-weak and CH-weak stars, one of which was previously known. The three groups seem to have different C+N+O and/or s-process element abundances, to be confirmed by high-resolution spectroscopy. These are typical characteristics of anomalous GCs. The CN distribution of NGC 3201 is quadrimodal, which is more common in anomalous clusters. However, NGC 3201 does not belong to the trend of anomalous GCs in the mass-size relation. Conclusions. The globular cluster NGC 3201 shows signs that it can be chemically tagged as anomalous: it has an unusual CN–CH relation, indications that pec-S1-S2 is an increasing sequence of C+N+O or s-process element abundances, and a multi-modal CN distribution that seems to correlate with s-process element abundances. The non-anomalous characteristics are that it has a debatable Fe-spread and it does not follow the trend of mass size of all anomalous clusters. Three scenarios are postulated here: (i) if the sequence pec-S1-S2 has increasing C+N+O and s-process element abundances, NGC 3201 would be the first anomalous GC outside of the mass-size relation; (ii) if the abundances are almost constant, NGC 3201 would be the first non-anomalous GC with multiple CN–CH anti-correlation groups; or (iii) it would be the first anomalous GC without variations in C+N+O and s-process element abundances. In all cases, the definition of anomalous clusters and the scenario in which they have an extragalactic origin must be revised.


2000 ◽  
Vol 198 ◽  
pp. 293-298 ◽  
Author(s):  
V. Hill ◽  
L. Pasquini

We report observations of lithium in a sample of 11 stars in the metal-poor open cluster NGC 2243, that were obtained from high-resolution spectroscopy at CASPEC (ESO 3.6m telescope). The targets are located at the turnoff region, plus one red giant star.NGC 2243 is one of the most metal-poor open cluster, almost as deficient as 47 Tuc, but substantially younger (∼4 Gyrs and [Fe/H]=-0.5 dex), which makes it a very interesting case to compare with more metal rich coeval clusters on the one hand, and old metal-rich globular clusters (47 Tuc) on the other hand. The preliminary Lithium abundances obtained are discussed in this framework.


2018 ◽  
Vol 620 ◽  
pp. A96 ◽  
Author(s):  
C. Muñoz ◽  
D. Geisler ◽  
S. Villanova ◽  
I. Saviane ◽  
C. C. Cortés ◽  
...  

Context. The bulge globular clusters (GCs) are key tracers of the bulge, a central and ancient component of our Galaxy. It is essential to understand their formation and evolution to study that of the bulge, as well as their relationship with the other Galactic GC systems (halo and disk GCs). High-resolution spectroscopy is a powerful tool for such studies, allowing us to obtain a detailed chemical characterization and kinematics of the clusters and to compare their chemical patterns with those of their halo and disk counterparts. Aims. Our main goals are to obtain detailed abundances for a sample of seven red giant members of NGC 6528 in order to characterize their chemical composition and study the relationship of this GC with the bulge, and with other bulge, halo, and disk GCs. Moreover, we analyze this cluster’s behavior associated with the multiple-populations phenomenon. Methods. We obtained the stellar parameters and chemical abundances of light elements (Na, Al), iron-peak elements (V, Cr, Mn, Fe, Co, Ni, Cu), α-elements (O, Mg, Si, Ca, Ti) and heavy elements (Zr, Ba, Eu) in seven red giant members of NGC 6528 using high-resolution spectroscopy from FLAMES-UVES. Results. In six stars of our sample we obtained a mean iron content of [Fe/H] = − 0.14 ± 0.03 dex, in good agreement with other studies. We found no significant internal iron spread. We detected one candidate variable star, which was excluded from the mean in iron content, and derived a metallicity in this star of [Fe/H] = − 0.55 ± 0.04 dex. Moreover, we found no extended O-Na anticorrelation but instead only an intrinsic Na spread. In addition, NGC 6528 does not exhibit a Mg-Al anticorrelation, and no significant spread in either Mg or Al. The α and iron-peak elements show good agreement with the bulge field star trend. The heavy elements are slightly dominated by the r-process. The chemical analysis suggests an origin and evolution similar to that of typical old Galactic bulge field stars. Finally, we find remarkable agreement in the chemical patterns of NGC 6528 and another bulge GC, NGC 6553, suggesting a similar origin and evolution.


1987 ◽  
Vol 115 ◽  
pp. 340-341
Author(s):  
J. R. Walsh

HH39 is the group of Herbig-Haro (HH) objects associated with the young semi-stellar object R Monocerotis (R Mon) and the variable reflection nebula NGC 2261. An R CCD frame and a B prime focus plate of the region show a filament connecting NGC 2261 with HH39, confirming the association between R Mon and the HH objects. This filament is probably composed of emission material. The southern knot in HH39 has brightened over the last 20 years; its proper motion has been determined and is similar to that of the other knots. A total of 8 knots can be distinguished in HH39 surrounded by diffuse nebulosity. High resolution spectroscopy of the Hα and [N II] emission lines shows the spatial variation of the radial velocity structure over the largest knots (HH39 A and C). Distinct differences in excitation and velocity structure between the knots are apparent. The observations are compatible with the knots being high velocity ejecta from R Mon, decelerated by interaction with ambient material and with bow shocks on their front surfaces.


2018 ◽  
Vol 618 ◽  
pp. A134 ◽  
Author(s):  
A. Mucciarelli ◽  
M. Salaris ◽  
L. Monaco ◽  
P. Bonifacio ◽  
X. Fu ◽  
...  

We present Li, Na, Al, and Fe abundances of 199 lower red giant branch star members of the stellar system Omega Centauri, using high-resolution spectra acquired with FLAMES at the Very Large Telescope. The A(Li) distribution is peaked at A(Li) ∼ 1 dex with a prominent tail towards lower values. The peak of the distribution well agrees with the lithium abundances measured in lower red giant branch stars in globular clusters and Galactic field stars. Stars with A(Li) ∼ 1 dex are found at metallicities lower than [Fe/H] ∼ –1.3 dex but they disappear at higher metallicities. On the other hand, Li-poor stars are found at all metallicities. The most metal-poor stars exhibit a clear Li–Na anti-correlation, where about 30% of the sample have A(Li) lower than ∼0.8 dex, while these stars represent a small fraction of normal globular clusters. Most of the stars with [Fe/H] > –1.6 dex are Li poor and Na rich. The Li depletion measured in these stars is not observed in globular clusters with similar metallicities and we demonstrate that it is not caused by the proposed helium enhancements and/or young ages. Hence, these stars formed from a gas already depleted in lithium. Finally, we note that Omega Centauri includes all the populations (Li-normal/Na-normal, Li-normal/Na-rich, and Li-poor/Na-rich stars) observed, to a lesser extent, in mono-metallic GCs.


2019 ◽  
Vol 490 (2) ◽  
pp. 2219-2227 ◽  
Author(s):  
Brodie J Norfolk ◽  
Andrew R Casey ◽  
Amanda I Karakas ◽  
Matthew T Miles ◽  
Alex J Kemp ◽  
...  

ABSTRACT Here we present the discovery of 895 s-process-rich candidates from 454 180 giant stars observed by the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) using a data-driven approach. This sample constitutes the largest number of s-process enhanced stars ever discovered. Our sample includes 187 s-process-rich candidates that are enhanced in both barium and strontium, 49 stars with significant barium enhancement only and 659 stars that show only a strontium enhancement. Most of the stars in our sample are in the range of effective temperature and log g typical of red giant branch (RGB) populations, which is consistent with our observational selection bias towards finding RGB stars. We estimate that only a small fraction (∼0.5 per cent) of binary configurations are favourable for s-process enriched stars. The majority of our s-process-rich candidates (95 per cent) show strong carbon enhancements, whereas only five candidates (<3  per cent) show evidence of sodium enhancement. Our kinematic analysis reveals that 97 per cent of our sample are disc stars, with the other 3 per cent showing velocities consistent with the Galactic halo. The scaleheight of the disc is estimated to be $z_{\rm h}=0.634 \pm {0.063}\, \mathrm{kpc}$, comparable with values in the literature. A comparison with yields from asymptotic giant branch (AGB) models suggests that the main neutron source responsible for the Ba and Sr enhancements is the 13C(α,n)16O reaction. We conclude that s-process-rich candidates may have received their overabundances via mass transfer from a previous AGB companion with an initial mass in the range $1\!-\!3\, \mathrm{M}_{\odot }$.


1995 ◽  
Vol 155 ◽  
pp. 337-338 ◽  
Author(s):  
L. Mantegazza ◽  
E. Poretti

Extensive photometric monitoring of bright δ Scuti stars, made in the last years, allowed us to get reliable frequency determinations also in very complicated cases. Table 1 gives a full description of our photometric targets. Recently, we realized that combining photometry with simultaneous high resolution spectroscopy, in order to study line profile variations, offers the possibility to perform a much more reliable mode identification. Hence, the photometric runs of FG Vir, X Cae, HD 2724 were paired with spectroscopic ones obtained at the Coudé Auxiliary Telescope (ESO, La Silla, Chile). The stellar spectra are centred at 4508 Å and they cover a range of 37.6 Å; the resolving power is about 50000-60000 and the linear dispersion is 2.4 Å/mm.


2019 ◽  
Vol 490 (2) ◽  
pp. 1821-1842 ◽  
Author(s):  
L Casamiquela ◽  
S Blanco-Cuaresma ◽  
R Carrera ◽  
L Balaguer-Núñez ◽  
C Jordi ◽  
...  

ABSTRACT The study of open-cluster chemical abundances provides insights on stellar nucleosynthesis processes and on Galactic chemo-dynamical evolution. In this paper we present an extended abundance analysis of 10 species (Fe, Ni, Cr, V, Sc, Si, Ca, Ti, Mg, O) for red giant stars in 18 OCCASO clusters. This represents a homogeneous sample regarding the instrument features, method, line list and solar abundances from confirmed member stars. We perform an extensive comparison with previous results in the literature, and in particular with the Gaia FGK Benchmark stars Arcturus and $\mu$-Leo. We investigate the dependence of [X/Fe] with metallicity, Galactocentric radius (6.5 kpc < RGC < 11 kpc), age (0.3 Gyr < Age < 10 Gyr), and height above the plane (|z| < 1000 pc). We discuss the observational results in the chemo-dynamical framework, and the radial migration impact when comparing with chemical evolution models. We also use APOGEE DR14 data to investigate the differences between the abundance trends in RGC and |z| obtained for clusters and for field stars.


Sign in / Sign up

Export Citation Format

Share Document