HALOGEN-FREE FLAME RETARDANTS FOR WIRE AND CABLE APPLICATIONS

2010 ◽  
Vol 83 (3) ◽  
pp. 282-302 ◽  
Author(s):  
Ming Wei ◽  
Daniel Murphy ◽  
Carol Barry ◽  
Joey Mead

Abstract Flame retardants play a very important role in avoiding fire risks in wire and cable applications due to heat generation by current or outside sources. Halogen flame retardants are typically used to ensure good flammability. The halogen flame retardants, however, are under close scrutiny because of their potential to give off corrosive compounds when the materials are burned, as well as other safety, environmental, and health issues. For wire and cable industries, halogen-free flame retardant additives, such as nanoclays, nanotubes, aluminium trihydrate, or magnesium hydroxide are potential alternatives. Types of halogen-free flame retardant additives used in wire and cable constructions are reviewed and discussed.

2011 ◽  
Vol 189-193 ◽  
pp. 1208-1211 ◽  
Author(s):  
Yan Shen ◽  
Shao Guo Wen ◽  
Ji Hu Wang ◽  
Hong Bo Liu ◽  
Hai Liang Qi ◽  
...  

In this paper, flame retardant Polyamide 6 (PA6) composites were prepared by nano-magnesium hydroxide (NMH) or its composites with melamine cyanurate(MCA) and ammonium polyphosphate(APP). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to analyze the structure of nano-magnesium hydroxide. The properties including tensile properties, molten index (MFI), rockwell hardness and density of flame retardant PA6 were analyzed. Orthogonal experiments were used to study flame retardancy of PA6 with NMH, MCA and APP. The results showed NMH had hexagonal orthorhombic crystal structure with size of 300×200×100nm. Density of polyamide 6 showed an upward trend when the content of NMH was increasing, the mechanical properties and hardness changed little while processing performance serious declined. The flame retardance of nitrogen-phosphorus -inorganic flame retardants was not desirable.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2554 ◽  
Author(s):  
Zhi Geng ◽  
Shuaishuai Yang ◽  
Lianwang Zhang ◽  
Zhenzhen Huang ◽  
Qichao Pan ◽  
...  

Introducing fire-retardant additives or building blocks into resins is a widely adopted method used for improving the fire retardancy of epoxy composites. However, the increase in viscosity and the presence of insoluble additives accompanied by resin modification remain challenges for resin transfer molding (RTM) processing. We developed a robust approach for fabricating self-extinguishing RTM composites using unmodified and flammable resins. To avoid the effects on resin fluidity and processing, we loaded the flame retardant into tackifiers instead of resins. We found that the halogen-free flame retardant, a microencapsulated red phosphorus (MRP) additive, was enriched on fabric surfaces, which endowed the composites with excellent fire retardancy. The composites showed a 79.2% increase in the limiting oxygen index, a 29.2% reduction in heat release during combustion, and could self-extinguish within two seconds after ignition. Almost no effect on the mechanical properties was observed. This approach is simple, inexpensive, and basically applicable to all resins for fabricating RTM composites. This approach adapts insoluble flame retardants to RTM processing. We envision that this approach could be extended to load other functions (radar absorbing, conductivity, etc.) into RTM composites, broadening the application of RTM processing in the field of advanced functional materials.


2014 ◽  
Vol 1033-1034 ◽  
pp. 900-906
Author(s):  
Ze Jiang Zhang ◽  
Li Jun Li ◽  
Feng Li ◽  
Jin He ◽  
Zi Qiong Gan

Infrared spectra of the pyrolysis gases of polyurethane foam flame retarded by MPOP, MP, MC, magnesium hydroxide, or antimony trioxide flame retardants was analyzed online by FTIR method. At 600°C, the polyurethane foam flame retarded by MPOP, MP, MC, magnesium hydroxide or antimony trioxide flame retardants released more hydrogen cyanide than the pure polyurethane foam, proved that the MPOP, MP, MC and magnesium hydroxide flame retardants could change the law that the polyurethane released hydrogen cyanide. At 600 °C, the peak of C=O stretching vibration at 1730cm-1did not appear for the flame-retardant polyurethane, indicating that the flame retardants can make the polyurethane rapidly carbonize and the fewer C=O intermediate was produced. The absorbent peaks of the fire-retardant samples at 1604cm-1, 1538 cm-1, 1250 to 1230 cm-1and 1450cm-1implied that the flame retardants could delay the oxidative decomposition of the polyurethane component at 600 °C, so that more components may be carbonized. When increasing the pyrolysis temperature, the perlite would make polyurethane foam release fewer hydrogen cyanide.


2011 ◽  
Vol 418-420 ◽  
pp. 540-543 ◽  
Author(s):  
Ding Meng Chen ◽  
Yi Ping Zhao ◽  
Jia Jian Yan ◽  
Li Chen ◽  
Zhi Zhi Dong ◽  
...  

Polyurethane foams (PUFs) filled with several halogen-free flame retardants and composite halogen-free flame retardants were prepared. The flame retardant, thermal stable and mechanical properties of the PUFs were investigated. The results of limiting oxygen index (LOI) and thermogravimetric analysis (TGA) revealed that PUFs filled with dimethyl methylphosphonate (DMMP) had better flame retardancy compared with other flame retardants and DMMP degraded at a low temperature to form several phosphorated acids which accelerated the formation of char layer. Composite flame retardant of DMMP and melamine (MA) had a synergistic effect between phosphorus and nitrogen. The combination of DMMP and MA slightly altered the density of the PUFs. Results from the mechanical analysis revealed that with the increase in concentration of MA in the composite flame retardant of DMMP and MA, the tensile strength of PUFs reduced firstly and then increased up to a constant.


2013 ◽  
Vol 98 (4) ◽  
pp. 868-874 ◽  
Author(s):  
Lei Ye ◽  
Yueying Miao ◽  
Hong Yan ◽  
Ze Li ◽  
Yulong Zhou ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiujuan Li ◽  
Ruisong Guo ◽  
Xiaodong Qian

The toxicity of CO threatens the life of people in the fire site. In this study, flame retardants of nano magnesium hydroxide particles and water-soluble flame retardant 8124 are used to be mixed into the aqueous film forming fire extinguishing agent (AFFF). Smoke-suppressed fire extinguishing agent was prepared in Waring-Blender mixing cup and then stirred at 3,000 r/min for 5 min. The new extinguishing agent shows a good performance of absorption of CO and reducing the flue gas temperature. The concentration of CO was decreased below 131 ppm and flue gas temperature was basically kept below 40°C, which was 367 ppm and 83.1°C less than that in free-fire. Using new extinguishing agent can effectively reduce the harm to the trapped personnel and firemen in the fire site. It was of great significance. The harm of CO concentration below 131 ppm and flue gas temperature below 40°C was low. The time to reach the maximum CO concentration and the maximum flue gas temperature was delayed, which ensures that people have more time to escape. Even if there was not enough time to escape, people will not be seriously threatened.


Sign in / Sign up

Export Citation Format

Share Document