Flame Retardant Polyamide 6 Composites Using NMH or NMH/MCA/APP

2011 ◽  
Vol 189-193 ◽  
pp. 1208-1211 ◽  
Author(s):  
Yan Shen ◽  
Shao Guo Wen ◽  
Ji Hu Wang ◽  
Hong Bo Liu ◽  
Hai Liang Qi ◽  
...  

In this paper, flame retardant Polyamide 6 (PA6) composites were prepared by nano-magnesium hydroxide (NMH) or its composites with melamine cyanurate(MCA) and ammonium polyphosphate(APP). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to analyze the structure of nano-magnesium hydroxide. The properties including tensile properties, molten index (MFI), rockwell hardness and density of flame retardant PA6 were analyzed. Orthogonal experiments were used to study flame retardancy of PA6 with NMH, MCA and APP. The results showed NMH had hexagonal orthorhombic crystal structure with size of 300×200×100nm. Density of polyamide 6 showed an upward trend when the content of NMH was increasing, the mechanical properties and hardness changed little while processing performance serious declined. The flame retardance of nitrogen-phosphorus -inorganic flame retardants was not desirable.

2013 ◽  
Vol 547 ◽  
pp. 41-48 ◽  
Author(s):  
Prasun Ganguly ◽  
A.M. Biradar ◽  
A.K. Jha

The polycrystalline samples of Ba4CaRTi3Nb7O30 (R = Eu, Dy), members of tungsten-bronze family, were prepared by high-temperature solid state reaction method and studied for their dielectric and electrical properties. X-ray diffraction (XRD) analysis reveals the formation of single-phase compounds having orthorhombic crystal structure at room temperature. Microstructural analysis by scanning electron microscope (SEM) shows that the compounds have well defined grains, which are distributed uniformly throughout the sample. Detailed dielectric properties of the compounds as a function of frequency and temperature show that the compounds undergo non-relaxor kind of ferroelectric-paraelectric phase transition of diffuse nature. Ferroelectric, piezoelectric and pyroelectric studies of the compounds have been discussed in this paper. The temperature dependence of dc conductivity of the compounds have been investigated. The conductivity study over a wide temperature range suggests that the compounds have negative temperature coefficient of resistance (NTCR) behaviour.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Hao Wu ◽  
Rogelio Ortiz ◽  
Renan De Azevedo Correa ◽  
Mourad Krifa ◽  
Joseph H. Koo

AbstractIncorporation of flame-retardant (FR) additives and nanoclay fillers into thermoplastic polymers effectively suppresses materials flammability and melt dripping behavior. However, it largely affects other properties, such as toughness and ductility. In order to recover the lost toughness and ductility of flame retardant polyamide 6, various loadings of maleic anhydride modified SEBS elastomer were added and processed by twin screw extrusion. TEM images showed exfoliated nanoclay platelets and reveals that the clay platelets well dispersed in the polymer matrix. By balancing the ratio of flame retardants, nanoclay and elastomers, formulation with elongation at break as high as 76% was achieved. Combining conventional intumescent FR and nanoclay, UL-94 V-0 rating and the LOI value as high as 32.2 were achieved. In conclusion, effective self-extinguishing and non-drip polyamide 6 nanocomposite formulations with significant improvement in toughness and ductility were achieved.


2017 ◽  
Vol 52 (10) ◽  
pp. 1295-1303 ◽  
Author(s):  
Yijiao Xue ◽  
Mingxia Shen ◽  
Fengling Lu ◽  
Yongqin Han ◽  
Shaohua Zeng ◽  
...  

To improve the flame resistance of polystyrene, three kinds of organophilic heterionic montmorillonites (Na-montmorillonite, Ca-montmorillonite, and Fe-montmorillonite) reinforced polystyrene nanocomposites were prepared by melt dispersion method. The structure and composition of the organo montmorillonites were characterized by using X-ray diffraction and Fourier-transform infrared analysis. The adhesion between organo montmorillonites and polystyrene was investigated by scanning electron microscopy. The flame resistance and thermal stability of the polystyrene/organo montmorillonites were evaluated by cone calorimeter test and thermogravimetric analysis. The interlayer space of organo montmorillonites increased with the increase of the oxidation state of the cations. With the addition of organo montmorillonites, the peak values of all the flame resistance indexes of the polystyrene/organo montmorillonites nanocomposites decreased, among which the PHRR values have decreased the most, compared with those of polystyrene. Their corresponding test times have all been delayed following almost precisely the same trend. Therefore, their flame retardant ability come from their lamellated structures, their charring forming abilities, and the reducing power of Fe3+ in polystyrene/Fe-montmorillonite. Organo montmorillonites mainly act as a kind of intumescent flame retardants. The flame resistance of polystyrene/Na-montmorillonite nanocomposite was the best, and the polystyrene/Ca-montmorillonite came second, which is slightly better than that of polystyrene/Fe-montmorillonite.


Author(s):  
Hongqiang Cui ◽  
Yongze Cao ◽  
Lei Zhang ◽  
Yuhang Zhang ◽  
Siying Ran ◽  
...  

Er3+ with different concentrations doped K2Yb(PO4)(MoO4) phosphors were prepared by a solid-state reaction method, and the layered orthorhombic crystal structure of the samples was confirmed by X-ray diffraction (XRD). Under...


2014 ◽  
Vol 1033-1034 ◽  
pp. 900-906
Author(s):  
Ze Jiang Zhang ◽  
Li Jun Li ◽  
Feng Li ◽  
Jin He ◽  
Zi Qiong Gan

Infrared spectra of the pyrolysis gases of polyurethane foam flame retarded by MPOP, MP, MC, magnesium hydroxide, or antimony trioxide flame retardants was analyzed online by FTIR method. At 600°C, the polyurethane foam flame retarded by MPOP, MP, MC, magnesium hydroxide or antimony trioxide flame retardants released more hydrogen cyanide than the pure polyurethane foam, proved that the MPOP, MP, MC and magnesium hydroxide flame retardants could change the law that the polyurethane released hydrogen cyanide. At 600 °C, the peak of C=O stretching vibration at 1730cm-1did not appear for the flame-retardant polyurethane, indicating that the flame retardants can make the polyurethane rapidly carbonize and the fewer C=O intermediate was produced. The absorbent peaks of the fire-retardant samples at 1604cm-1, 1538 cm-1, 1250 to 1230 cm-1and 1450cm-1implied that the flame retardants could delay the oxidative decomposition of the polyurethane component at 600 °C, so that more components may be carbonized. When increasing the pyrolysis temperature, the perlite would make polyurethane foam release fewer hydrogen cyanide.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2217 ◽  
Author(s):  
Tianxiang Liang ◽  
Jianan Cai ◽  
Shumei Liu ◽  
Hualin Lai ◽  
Jianqing Zhao

A way to suppress the deterioration in mechanical properties of polyamide 6 (PA6) is required, especially with high loading of flame retardants in the matrix. In this study, a novel aromatic Schiff base diepoxide (DES) was synthesized. It exhibited an efficient chain extension effect on PA6 and a synergistic flame-retardant effect with aluminum diethylphosphinate (AlPi) for PA6. The PA6 composite with 16 wt.% AlPi only passed UL-94 V-0 rating at 1.6 mm thickness, while the combination of 1.5 wt.% DES with 13 wt.% AlPi induced PA6 to achieve a UL-94 V-0 rating at 0.8 mm thickness. The tensile, flexural, and Izod notched impact strengths were increased by 16.2%, 16.5%, and 24.9%, respectively, compared with those of V-0 flame-retarded PA6 composites with 16 wt.% AlPi. The flame-retarded mechanism of PA6/AlPi/DES was investigated by cone calorimetry and infrared characterization of the char residues and pyrolysis products. These results showed that DES had a synergistic effect with AlPi in condensed-phase flame retardation by promoting the production of aluminum phosphorus oxides and polyphosphates in the char residues.


2012 ◽  
Vol 02 (03) ◽  
pp. 1250015
Author(s):  
S. K. PATRI ◽  
R. N. P. CHOUDHARY ◽  
C. RINALDI

Bi 9-x Fe 5+x Ti 3 O 27 (x = 0-3) compounds of bismuth layered perovskite structure have been successfully prepared by solid-state reaction method. X-ray diffraction (XRD) studies revealed the orthorhombic crystal structure of all the compounds. Impedance spectroscopy has been studied to characterize the electrical properties of polycrystalline Bi 9-x Fe 5+x Ti 3 O 27 (x = 0-3) compounds. The shape of complex impedance curves inferred the contribution of bulk and grain boundary effects on the electrical properties of the compounds. Temperature dependent magnetization measurements were made from 2 K to 300 K. Narrow hysteresis loops observed at room temperature indicate antiferromagnetic behavior of the compounds.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1371 ◽  
Author(s):  
Onur Tosun ◽  
Frank M. Abel ◽  
Balamurugan Balasubramanian ◽  
Ralph Skomski ◽  
David J. Sellmyer ◽  
...  

The structural and magnetic properties of Co2Ge nanoparticles (NPs) prepared by the cluster-beam deposition (CBD) technique have been investigated. As-made particles with an average size of 5.5 nm exhibit a mixture of hexagonal and orthorhombic crystal structures. Thermomagnetic measurements showed that the as-made particles are superparamagnetic at room temperature with a blocking temperature (TB) of 20 K. When the particles are annealed at 823 K for 12 h, their size is increased to 13 nm and they develop a new orthorhombic crystal structure, with a Curie temperature (TC) of 815 K. This is drastically different from bulk, which are ferromagnetic at cryogenic temperatures only. X-ray diffraction (XRD) measurements suggest the formation of a new Co-rich orthorhombic phase (OP) with slightly increased c/a ratio in the annealed particles and this is believed to be the reason for the drastic change in their magnetic properties.


2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Piyush R. Das ◽  
Banarji Behera ◽  
R. N. P. Choudhary ◽  
B. K. Samantray

The polycrystalline samples ofNa2Pb2R2W2Ti4V4O30(R = Dy, Pr) were prepared by low-temperature, (i.e., at650∘C) solid-state reaction technique. The preparation conditions have been optimized using thermogravimetry analysis (TGA) technique. X-ray diffraction (XRD) studies of the compounds showed the formation of a single-phase orthorhombic crystal structure at room temperature. Studies of dielectric properties (ɛrand tanδ) of the compounds at frequencies 10, 100, and 1000 kHz in a wide temperature range (room temperature–500∘C) exhibit ferroelectric phase transitions at132∘Cfor NPDWTV and at122∘Cfor NPPWTV of diffuse type. Ferroelectric properties of the materials are confirmed by polarization study.


2014 ◽  
Vol 1033-1034 ◽  
pp. 916-920 ◽  
Author(s):  
Hai Shan Tang ◽  
Yi Lun Tan ◽  
Ning Ping Wang ◽  
Lang Ping Xia ◽  
Jie Zhu ◽  
...  

Aluminum hypophosphite can be used to flame retard glass fiber reinforced polyamide 6 (GFPA6). TGIC microcapsulated AlHP (T-AlHP) and epoxy resin microcapsulated AlHP (E-AlHP) were made and put into GFPA6. The vertical burning tests and mechanical tests were taken to study the flame retardant performance and mechanical properties of the corresponding composites. Addition of either T-AlHP or E-AlHP resulted in an increased UL-94 rating and a decreased comprehensive mechanical performance. T-AlHP endowed GFPA6 a better flame retardancy than E-AlHP did. TG showed the decomposition behaviors of T-AlHP, E-AlHP, and the corresponding composites. From Py-GC/MS, the detailed pyrolysis products of flame retardants and the flame-retardant composites were identified. Finally, the properties and mechanism of flame retarded GFPA6 with these two kinds of microcapsulated Aluminum Phosphate were summarized.


Sign in / Sign up

Export Citation Format

Share Document