High-Molecular-Weight, High-Unsaturation Copolymers of Isobutylene and Conjugated Dienes. I. Synthesis

1976 ◽  
Vol 49 (4) ◽  
pp. 960-966 ◽  
Author(s):  
W. A. Thaler ◽  
D. J. Buckley

Abstract This investigation has provided insight into the critical role of solution properties on the course of cationic polymerization and has led to a technique for reconciling the opposing demands for synthesis of isoolefin-diene copolymers both free from gel and high in molecular weight. By this technique, the synthesis of a broad range of intermediate-unsaturation elastomers of quality has been realized.

Blood ◽  
1986 ◽  
Vol 67 (3) ◽  
pp. 805-810
Author(s):  
JJ Chang ◽  
CF Scott ◽  
RW Colman

High molecular weight (HMW) kininogen, the cofactor for activation of the contact system of plasma proteolysis, transports and optimally positions prekallikrein and factor XI on a negatively charged surface, allowing those zymogens to be activated by surface-bound factor XIIa. HMW kininogen circulates in plasma as a procofactor that, after cleavage by kallikrein or factor XIIa, gains ability to bind to the surface. The mechanism responsible for this increased affinity for the surface is unknown. We hypothesized that modification of arginine residues may prevent cleavage of HMW kininogen, since the initial kallikrein-induced cleavage sites on the HMW kininogen molecule are at the NH2 terminal and the COOH terminal of the bradykinin-containing portion of the molecule, each of which contains arginine. We found that modification with butanedione of four arginine residues in the HMW kininogen molecule prevented bradykinin release, which results from cleavage of HMW kininogen. Furthermore, HMW kininogen coagulant activity was lost, in proportion to the degree of arginine modification, until 6.6 residues had been modified. Complex formation with prekallikrein, however, was found to be uneffected by the modification of modified HMW kininogen. To account for the loss of coagulant activity, we also examined the ability of modified HMWKa (active cofactor) to bind to an activating surface. The affinity of modified HMWKa for kaolin was tenfold less than the affinity of unmodified HMWKa. These data suggest that arginine residues play a critical role in the ability of HMW kininogen to function as an activation cofactor, both by preventing the cleavages that produce HMWKa as well as by decreasing the affinity of HMWKa for the surface.


Blood ◽  
1986 ◽  
Vol 67 (3) ◽  
pp. 805-810 ◽  
Author(s):  
JJ Chang ◽  
CF Scott ◽  
RW Colman

Abstract High molecular weight (HMW) kininogen, the cofactor for activation of the contact system of plasma proteolysis, transports and optimally positions prekallikrein and factor XI on a negatively charged surface, allowing those zymogens to be activated by surface-bound factor XIIa. HMW kininogen circulates in plasma as a procofactor that, after cleavage by kallikrein or factor XIIa, gains ability to bind to the surface. The mechanism responsible for this increased affinity for the surface is unknown. We hypothesized that modification of arginine residues may prevent cleavage of HMW kininogen, since the initial kallikrein-induced cleavage sites on the HMW kininogen molecule are at the NH2 terminal and the COOH terminal of the bradykinin-containing portion of the molecule, each of which contains arginine. We found that modification with butanedione of four arginine residues in the HMW kininogen molecule prevented bradykinin release, which results from cleavage of HMW kininogen. Furthermore, HMW kininogen coagulant activity was lost, in proportion to the degree of arginine modification, until 6.6 residues had been modified. Complex formation with prekallikrein, however, was found to be uneffected by the modification of modified HMW kininogen. To account for the loss of coagulant activity, we also examined the ability of modified HMWKa (active cofactor) to bind to an activating surface. The affinity of modified HMWKa for kaolin was tenfold less than the affinity of unmodified HMWKa. These data suggest that arginine residues play a critical role in the ability of HMW kininogen to function as an activation cofactor, both by preventing the cleavages that produce HMWKa as well as by decreasing the affinity of HMWKa for the surface.


1957 ◽  
Vol 30 (1) ◽  
pp. 315-325
Author(s):  
R. B. MacFarlane ◽  
L. A. McLeod

Abstract Production of high molecular weight copolymers of butadiene and styrene for use in oil-extended rubbers has aroused interest in the solution properties of copolymers above the molecular weight range commonly encountered in commercial practice. It has been observed that solubility of such polymers in toluene is a time-dependent phenomenon and the apparent solubility can increase continuously, in the absence of agitation, for as long as 800 hours. Although a standard Harris cage solubility test may show the presence of 50% gel, other properties do not confirm the presence of any appreciable quantities of insoluble material. Mild agitation rapidly promotes almost complete solubility. Dilute solution viscosity measurements are very misleading unless the influence of solution time is recognized and apparent intrinsic viscosities rise progressively with time of contact of the sample with solvent. This time-dependence of solution has been found to occur at conversions higher than 50% and is also a function of the amount of modifier used in the polymerization recipe. It has not been possible to shorten the solution time for viscosity measurements by mild heating or gentle agitation. Mixed solvents cause a change in the amount of increase of the apparent intrinsic viscosity but do not shorten the time to equilibrium. Measurement of the slope constant in the Huggins viscosity equation indicate that these solubility and viscosity effects coincide with the appearance of a marked degree of branching in the polymer molecules. The effect is, therefore, interpreted as being caused by the relatively slow disentanglement of molecules of complex structure.


2000 ◽  
Vol 275 (33) ◽  
pp. 25139-25145 ◽  
Author(s):  
David H. Ho ◽  
Karen Badellino ◽  
Frank A. Baglia ◽  
Mao-Fu Sun ◽  
Ming-Ming Zhao ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1077
Author(s):  
Romisuhani Ahmad ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Wan Mastura Wan Ibrahim ◽  
Kamarudin Hussin ◽  
Fakhryna Hannanee Ahmad Zaidi ◽  
...  

The primary motivation of developing ceramic materials using geopolymer method is to minimize the reliance on high sintering temperatures. The ultra-high molecular weight polyethylene (UHMWPE) was added as binder and reinforces the nepheline ceramics based geopolymer. The samples were sintered at 900 °C, 1000 °C, 1100 °C, and 1200 °C to elucidate the influence of sintering on the physical and microstructural properties. The results indicated that a maximum flexural strength of 92 MPa is attainable once the samples are used to be sintered at 1200 °C. It was also determined that the density, porosity, volumetric shrinkage, and water absorption of the samples also affected by the sintering due to the change of microstructure and crystallinity. The IR spectra reveal that the band at around 1400 cm−1 becomes weak, indicating that sodium carbonate decomposed and began to react with the silica and alumina released from gels to form nepheline phases. The sintering process influence in the development of the final microstructure thus improving the properties of the ceramic materials.


2021 ◽  
Vol 62 (2) ◽  
pp. 147-157
Author(s):  
Caleb Gordon ◽  
Hannah Malcolm

This article analyses the growing participation of UK Christians in climate initiatives over the last five years. In many cases, climate science is cited as a necessary consideration for the fulfilment of already-existing Christian commitments. This represents a significant shift in the ways UK Christians understand the role of dialogue between theology and the sciences; previous science and theology dialogue has usually been treated as an area of expert concern, primarily offering insight into apologetics or specific ethical problems. By contrast, the dialogue between climate science and theology has seen the emergence of non-technical leadership amid the expectation that climate science plays a critical role in re-examining the meaning of Christian life, both for individuals and as communities.


2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
S. Ramaswami ◽  
Vasudeva Avuthu ◽  
Chian-Fong Yen ◽  
...  

Purpose To overcome the problem of inferior through-the-thickness mechanical properties displayed by armor-grade composites based on 2-D reinforcement architectures, armor-grade composites based on 3D fiber-reinforcement architectures have recently been investigated experimentally. Design/methodology/approach The subject of the present work is armor-grade composite materials reinforced using ultra-high-molecular-weight polyethylene fibers and having four (two 2D and two 3D) prototypical architectures, as well as the derivation of the corresponding material models. The effect of the reinforcement architecture is accounted for by constructing the appropriate unit cells (within which the constituent materials and their morphologies are represented explicitly) and subjecting them to a series of virtual mechanical tests. The results obtained are used within a post-processing analysis to derive and parameterize the corresponding homogenized-material models. One of these models (specifically, the one for 0°/90° cross-collimated fiber architecture) was directly validated by comparing its predictions with the experimental counterparts. The other models are validated by examining their physical soundness and details of their predictions. Lastly, the models are integrated as user-material subroutines, and linked with a commercial finite-element package, in order to carry out a transient non-linear dynamics analysis of ballistic transverse impact of armor-grade composite-material panels with different reinforcement architectures. Findings It is found that the reinforcement architecture plays a critical role in the overall ballistic limit of the armor panel, as well as in its structural and damage/failure response. Originality/value To the authors’ knowledge, the present work is the first reported attempt to assess, computationally, the utility and effectiveness of 3D fiber-reinforcement architectures for ballistic impact applications.


Sign in / Sign up

Export Citation Format

Share Document