Kinetics of Crosslinking and Network Changes in Natural Rubber Vulcanizates with a Dithiodimorpholine Based Accelerator System

1980 ◽  
Vol 53 (5) ◽  
pp. 1015-1022 ◽  
Author(s):  
A. K. Bhowmick ◽  
S. K. De

Abstract Kinetics of crosslinking and network changes in unfilled and filled natural rubber vulcanizates with a dithiodimorpholine based accelerator system have been studied at 150° and 180°C. Results show that addition of HAF black enhances the polysulfidic crosslinks as well as the total crosslinks. This has been explained with the help of Coran's model wherein HAK black increases the rate constants. It is likely that the filler surface prevents desulfuration and undesirable side reactions involving the crosslink precursors. Increase of curing temperature by 30°C lowers the total crosslink density and increases the sulfur inefficiency.

2006 ◽  
Vol 79 (4) ◽  
pp. 553-560 ◽  
Author(s):  
Rani Joseph

Abstract HXNBR (Hydrogenated Carboxylated Nitrile Rubber) has very good heat ageing resistance and oil resistance. A novel accelerator system is designed to bring about the vulcanization of HXNBR at room temperature. The room temperature cured samples showed good mechanical properties equivalent to those of high (150 °C) temperature cured samples. Natural rubber vulcanizates are highly prone to oxidative and ozone degradation. The oil resistance of natural rubber vulcanizates is also very low. The oil resistance, ozone and oxidative degradation resistance of natural rubber vulcanizates are considerably improved by placing a thin coating of HXNBR over it.


2002 ◽  
Vol 75 (5) ◽  
pp. 935-942 ◽  
Author(s):  
G. R. Hamed ◽  
N. Rattanasom

Abstract Tensile strengths, σb, of gum and N115-filled natural rubber test pieces, with and without edge pre-cuts, have been determined. At low crosslink density, the regular (uncut) σb of filled and gum vulcanizates is similar. However, at high crosslink density, the gum NR becomes brittle, while the corresponding filled rubber remains strong and resistant to cut growth. It is proposed that the tightly linked gum does not strain-crystallize appreciably during stretching, but that its filled counterpart does. Carbon black appears capable of inducing crystallization in a network that alone remains amorphous during extension. Filled vulcanizates of various crosslink densities have similar normal tensile strengths ( ≈ 30 MPa), but strengths differ, sometimes more than twofold, if a pre-cut is present. Lightly crosslinked specimens containing a small cut have strengths that depend very weakly on cut size, c. Furthermore, these develop long longitudinal cracks from which catastrophic rupture initiates. With larger cuts, strength decreases more rapidly with increasing c, there is less longitudinal crack growth, and rupture initiates near the original cut tip. In contrast, the strength of a highly crosslinked vulcanizate is sensitive to small cuts and test pieces exhibit minimal longitudinal cracking before failure.


1965 ◽  
Vol 38 (1) ◽  
pp. 189-203 ◽  
Author(s):  
W. Scheele ◽  
J. Helberg

Abstract Vulcanization of natural rubber with sulfur was studied in presence of six sulfenamides, to determine the effect of the chemical constitution of the sulfenamide on sulfur decrease and on crosslinking. The results can be condensed as follows: (1) The kinetics of sulfur disappearance is in every respect qualitatively independent of the chemical constitution of the sulfenamide. (2) For the sulfenamides investigated, the smallest and largest rate constants for sulfur decrease differed only by a factor of two. (3) Greater differences are encountered in the induction times for sulfur decrease and for crosslinking. The latter are notably longer than those for sulfur disappearance. (4) The same activation energy, 23 kcal/mole, is derived from the temperature dependence of the induction times for all the sulfenamides. (5) The dissociation of sulfenamides in solution and their reaction with mercaptobenzothiazole were investigated further. The results provide the basis for a proposed reaction mechanism, which is presented in detail and can account for a number of the features typical of sulfenamide-accelerated vulcanization. (6) The drop in sulfur concentration goes at practically the same rate, if one introduces, instead of N, N-dicyclohexyl-2-benzothiazolesulfenamide, the corresponding ammonium mercaptide in equimolar concentration.


1985 ◽  
Vol 9 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Jacquelynn L. Savoca ◽  
Robert P. Lattimer ◽  
Joseph M. Richards ◽  
Willem Windig ◽  
Henk L.C. Meuzelaar

2014 ◽  
Vol 974 ◽  
pp. 102-106
Author(s):  
Mazlina Mustapha Kamal ◽  
Muhammad Zahid Zakaria

Rubber reinforcement in general depends on the type of filler used in the rubber mixture. Instead of carbon black, Silica filler has been widely accepted in tyre making due to its low rolling resistance property. In recent years, there is a trend in using higher curing temperature in order to improve productivity of vulcanisation line without drawbacks in the performance of tyres. In this work, effect of vulcanisation temperature based on the silica filled ENR curing behaviour was studied. Results indicate that time-dependant reversion behaviour of ENR was similar to that of unmodified Natural Rubber. The physical properties slowly deteriorated as the curing temperature approached 180°C which related to low crosslink density. Carbon Black filled ENR compound was used as a comparison.


2003 ◽  
Vol 76 (5) ◽  
pp. 1290-1310 ◽  
Author(s):  
A. Ansarifar ◽  
R. Nijhawan ◽  
T. Nanapoolsin ◽  
M. Song

Abstract The reinforcing effect of up to 6 parts per hundred rubber by weight (phr) bis- (3-triethoxysilylpropyl) tetrasulfide (TESPT), a bifunctional organosilane, on the crosslink density, bound rubber, and technical properties of some conventional accelerator/sulfur compounds of natural rubber, containing 30 phr precipitated amorphous white silica was studied. The crosslink density and bound rubber improved as a function of TESPT loading. The tensile strength, elongation at break, stored energy density at rupture, and cohesive tear strength deteriorated at low loading of TESPT, but they subsequently increased after the full amount of TESPT was introduced into the compound. The improved properties of the vulcanizate was due to the better dispersion of the filler in the rubber matrix. However, the cyclic fatigue life was adversely affected, and the hardness hardly changed as a result of adding TESPT to the rubber.


1970 ◽  
Vol 43 (5) ◽  
pp. 1194-1214 ◽  
Author(s):  
H. Westlinning

Abstract Aminomercaptotriazines are a new class of accelerators for rubber vulcanization. The kinetics of the vulcanization reaction and the yield of crosslinks depend strongly on the molecular structure of the accelerators. The vulcanization is highly resistant to reversion which is demonstrated by a smaller increase in heat generation under dynamic deformation as well as by higher vulcanization temperatures and longer vulcanization times. In natural rubber and synthetic polyisoprenes aminomercaptodisulfides produce high yields of crosslinks combined with high processing safety. Fatigue strength of natural rubber vulcanizates is considerably enhanced by air aging. In blends of NR and SBR with BR, sulfenamides of dimercaptotriazines produce a very stable vulcanizate combined with good processing safety. Rate of cure can be increased by combination with a mercaptan. With polydisulfides SBR can be crosslinked without elemental sulfur at all. The vulcanizates have a high fatigue strength and a high hysteresis.


Sign in / Sign up

Export Citation Format

Share Document