Ultrasonic Measurements with Rubber Compounds during Extrusion

1979 ◽  
Vol 52 (2) ◽  
pp. 294-303 ◽  
Author(s):  
R. Caspary ◽  
P. Kretschmer

Abstract The dependence of the Index of Elasticity, E, the reciprocal value of sound velocity, on temperature and pressure is related to specific volume and compressibility of rubbers. The sensitivity of E towards changes of temperature and pressure was calculated, indicating a new versatile possibility for the control of rubber extruders. To confirm this, extruder experiments were carried out with an SHR compound, of which a working diagram was established showing the complete behavior of E=f(p,T). The effect of compound composition, especially of plasticizer and carbon black content, was examined. Viscosity in the extruder primarily determines changes in E. The method was shown to be applicable up to a die diameter of at least 200 mm. The method may also be applied to follow degradation of rubber compounds during mastication.

2017 ◽  
Vol 59 (11-12) ◽  
pp. 1054-1060 ◽  
Author(s):  
Mohan Kumar Harikrishna Kumar ◽  
Subramaniam Shankar ◽  
Rathanasamy Rajasekar ◽  
Pal Samir Kumar ◽  
Palaniappan Sathish Kumar

2020 ◽  
Vol 39 (1) ◽  
pp. 81-90
Author(s):  
An Zhao ◽  
Xuan-Yu Shi ◽  
Shi-Hao Sun ◽  
Hai-Mo Zhang ◽  
Min Zuo ◽  
...  

2011 ◽  
Vol 311-313 ◽  
pp. 201-204
Author(s):  
Hong Zhong Ru ◽  
Ran Ran Zhao

Electrical conductive carbon black-filled cement-based composites are significant as multifunctional structural materials. Double percolation in carbon black-filled cement-based composites involves both carbon black particle percolation and cement paste percolation, which has great effect on the resistivity of composites. Based on double percolation theory, the influences of sand-binder ratio and carbon black volume fraction on the resistivity of carbon black-filled cement-based composites are investigated. The results show that besides carbon black volume fraction, sand-binder ratio is a key factor affecting double percolation behavior in carbon black-filled cement-based composites. At a fixed carbon black content in overall mortar, with increasing sand-binder ratio, the cement paste percolation though aggregate phase increases due to high obstruction of aggregate but the carbon black particle percolation in cement paste decreases. This is because that the microstructure of aggregate is impenetrable so that the carbon black particles are limited in cement paste, that is, the carbon black content in paste is compacted and large amount of conductive paths are generated by lapped adjacent carbon black particles in paste. The double percolation in the electrical conduction in carbon black-filled cement-based composites is observed when the carbon black volume fraction is 7.5% and sand-binder ratio is 1.4, and its resistivity is only 3200 Ωcm, so that a sand-binder ratio of 1.4 and 7.5% carbon black volume fraction or more are recommended for attaining high conductivity with a compromise between workability and conductivity.


1928 ◽  
Vol 1 (3) ◽  
pp. 485-497 ◽  
Author(s):  
C. R. Johnson

Abstract The rates of evolution of gas from carbon black with variation of time, temperature, and pressure have been determined. Complete analyses have been made of five types of carbon black, which involve an organic combustion of the original sample, an organic combustion of the sample after the gases have been removed, a determination of the loss in weight represented by the gases removed, analyses of the gases removed, and finally a complete accounting, or balance, of the carbon in the steps considered. In an attempt to supply some missing information not revealed by the foregoing, some special gas analyses under varying conditions were made. The relationship between the amount and composition of volatile matter evolved from carbon blacks and the properties imparted to vulcanized rubber when compounded with these blacks has been studied.


1944 ◽  
Vol 17 (2) ◽  
pp. 451-474
Author(s):  
D. Parkinson

Abstract Carbon blacks can be grouped into different classes according to the way in which their fineness of division relates to different properties in rubber. Within any one class the principal properties vary in a regular manner with particle size. The normal class consists of the furnace carbons, Kosmos (Dixie)-40, Statex, the rubber-grade impingement carbons, and possibly, the color-grade impingement carbons. The subnormal classes consist of thermal carbons and acetylene and lamp blacks. Irrespective of the above classification, the properties which depend more on fineness of division than on other factors are rebound resilience, abrasion resistance, tensile strength and tear resistance. The lower limit of particle diameter for best tensile strength and tear resistance appears to be higher than that for abrasion resistance. B.S.I, hardness and electrical conductivity are properties which depend at least as much on other factors as on particle size. Stiffness (modulus) depends more on other factors than on particle size. Factors modifying the effects of particle size (or specific surface) include the presence of carbon-carbon structures and a reduction in strength of bond in rubber-carbon structures. Carbon black is thought to exist in rubber in four states: agglomerated, flocculated, dispersed, and bonded to the rubber molecules (the reënforcing fraction). Abrasion resistance is regarded as providing the only reliable measure of reënforcement.


2009 ◽  
Vol 30 (5) ◽  
pp. 1561-1568 ◽  
Author(s):  
A. Mostafa ◽  
A. Abouel-Kasem ◽  
M.R. Bayoumi ◽  
M.G. El-Sebaie

Sign in / Sign up

Export Citation Format

Share Document