Partial replacement of carbon black by nanoclay in butyl rubber compounds for tubeless tires

2017 ◽  
Vol 59 (11-12) ◽  
pp. 1054-1060 ◽  
Author(s):  
Mohan Kumar Harikrishna Kumar ◽  
Subramaniam Shankar ◽  
Rathanasamy Rajasekar ◽  
Pal Samir Kumar ◽  
Palaniappan Sathish Kumar
2018 ◽  
Vol 157 ◽  
pp. 07007 ◽  
Author(s):  
Darina Ondrušová ◽  
Slavomíra Božeková ◽  
Lenka Buňová ◽  
Mariana Pajtášová ◽  
Ivan Labaj ◽  
...  

The present paper deals with a targeted modification of two kinds of alternative additives - waste from glass production and natural mineral filler and explores their effect on the properties of polymeric materials. In the function of first alternative filler was used sludge from weighing the ingredients of glass batch in the glass production. The second used was natural aluminosilicate material based on zeolite (clinoptilolite). These alternative fillers have been modified in order to increase its efficiency, using the silanes: 3-aminopropyl-triethoxysilane, bis(triethoxysilyl)propyl-tetrasulfide and 3-(triethoxysilyl)propyl-methacrylate. In the case of alternative filler based on zeolite the influence of silanization conditions on the filler efficiency have been also studied. Prepared modified fillers were mixed into rubber compounds as partial replacement of commonly used filler – carbon black. The influence of prepared fillers on rheology and curing characteristics of rubber compounds and also on physical and mechanical properties of vulcanizates has been studied. Obtained results of measured characteristics of polymeric systems containing prepared alternative fillers were compared with the results obtained in the case of reference rubber compound with a commertially used filler – carbon black.


2018 ◽  
Vol 32 (09) ◽  
pp. 1850100 ◽  
Author(s):  
M. A. Alzamil ◽  
K. Alfaramawi ◽  
S. Abboudy ◽  
L. Abulnasr

Temperature and concentration dependence of electrical resistance of butyl rubber filled with GPF carbon black was carried out. Current–voltage (I–V) characteristics at room-temperature were also investigated. The I–V characteristics show that the behavior is linear at small voltages up to approximately 0.15 V and currents up to 0.05 mA indicating that the conduction mechanism was probably due to electron tunneling from the end of conductive path to the other one under the action of the applied electric field. At higher voltages, a nonlinear behavior was noticed. The nonlinearity was attributed to the joule heating effects. Electrical resistance of the butyl/GPF composites was measured as a function of temperature during heating and cooling cycles from 300 K and upward to a specific temperature. When the specimens were heated up, the resistance was observed to increase continuously with the rise of temperature. However, when the samples were cooled down, the resistance was observed to decrease following a different path. The presence of conduction hysteresis behavior in the resistance–temperature curves during the heating and cooling cycles was then verified. The electrical conduction of the composite system is supposed to follow an activation conduction mechanism. Activation energy was calculated at different filler concentrations for both the heating and cooling processes.


2019 ◽  
pp. 96-101
Author(s):  
M. N. Nagornaya ◽  
A. V. Myshlyavtsev ◽  
E. A. Strizhak

The influence of carbon black N121 and N326, oxidized by active oxygen forms, in comparison with the influence of channel carbon black K 354 on the properties of rubbers based on butyl rubber was investigated. It was revealed that the introduction of oxidized carbon black samples into the composition of rubber compounds allows increasing the start time of rubber mixture scorching from 8.82 to 11.17 minutes, increasing the level of conventional tensile strength from 15, 52 to 16.68 MPa. It has been established that using rubber based on butyl rubber as a filler for carbon black N121 or N326, oxidized with 30% hydrogen peroxide, makes it possible to obtain rubber with a surface energy similar to rubber K 354.


2019 ◽  
Vol 254 ◽  
pp. 04010
Author(s):  
Mariana Pajtášová ◽  
Darina Ondrušová ◽  
Róbert Janík ◽  
Zuzana Mičicová ◽  
Beáta Pecušová ◽  
...  

The presented paper deals with a study of selected rubber compounds as well as their vulcanizates with partially replaced commonly used filler by adding selected alternative fillers. Alternative fillers were mixed into rubber compounds as partial replacement of commonly used filler – carbon black. As an alternative partial replacement of common filler, we have chosen fine fractions of the waste of thermoplastics. The differences of rubber compounds were based on the amount of used alternative filler. We determined vulcanization characteristics of prepared tread compounds and physical and mechanical properties and dynamic mechanical properties of their vulcanizates. From the measured results it can be concluded that studied waste can be used in the function of filler into rubber, as partial replacement of commonly used filler.


1956 ◽  
Vol 29 (4) ◽  
pp. 1215-1232 ◽  
Author(s):  
S. de Mey ◽  
G. J. van Amerongen

Abstract Since rubber articles are often exposed in service to small periodic deformations, great interest attaches to the dynamic-mechanical characteristics of rubber. It has been established that the conditions under which these characteristics are determined have a pronounced influence on the results obtained, so that the measurements must be undertaken under precisely specified conditions. A new test apparatus is described for measuring the dynamic-mechanical characteristics, with which measurements can be performed at any desired stress setting, frequency, temperature, and amplitude on the same samples, both for compression and for shear loading. The incompressibility of filler-free natural-rubber compounds has been demonstrated by measurements made on samples with different shape factors and with varied static initial stress, under compression and with shear loading. The temperature, frequency, and amplitude dependence of the dynamic-mechanical characteristics of different rubber compounds is discussed on the basis of a number of measurements. The maximum value of the loss factor, which occurs in the vicinity of the second-order transition point, appears at a higher temperature in GR-S (cold rubber), Vulkollan, and Butyl rubber than in natural rubber. There is a connection between this fact and the much greater frequency and temperature dependence of Butyl rubber compared to natural rubber in the vicinity of room temperature. A compound based on natural rubber and a styrene-butadiene (85/15) co-polymer shows two maxima in the loss factor. One of these is characteristic of natural rubber, the other of the polymer. The dynamic characteristics of filler-free rubber compounds are not very sensitive to amplitude. It is found that the marked amplitude dependence of reinforced rubber compounds cannot be accounted for by increased temperature or by any nonlinearity of the stress-strain curve. The influence of composition on the dynamic-mechanical characteristics of natural rubber has been tested for a number of compounds. It is established that the carbon black types can have a significant effect on the E′ modulus. At small amplitudes the magnitude is greater for a compound containing SAF or EPC carbon black than for one containing HAF carbon black. Natural rubber reinforced with Aerosil or aniline resin shows a small loss factor, while compounds vulcanized with Thiuram show a large one. The present study is part of a fundamental investigation on rubber carried out by the Research Division of the Rubber-Stichting in Delft under the direction of H. C. J. de Decker.


2021 ◽  
Author(s):  
Vitor Peixoto Klienchen de Maria ◽  
Fábio Friol Guedes de Paiva ◽  
Flávio Camargo Cabrera ◽  
Carlos Toshiyuki Hiranobe ◽  
Gabriel Deltrejo Ribeiro ◽  
...  

2019 ◽  
pp. 123-128
Author(s):  
M. N. Nagornaya ◽  
A. V. Myshliavtsev ◽  
S. Ya. Khodakova

The subject of the study were samples of channel technical carbon K354, furnace technical carbon N121 and experimental – based on TUN121, oxidized with active forms of oxygen. Samples of carbon black were studied in the composition of a rubber mixture based on BK 1675N butyl rubber. The purpose of this study was to determine the possibility of using oxidized technical carbon N121 in fillers of rubber based on butyl rubber, instead of carbon black K354. The physicochemical properties of the samples of technical carbon under study, the results of physical and mechanical tests, and the gas permeability tests of rubber mixtures filled with the samples under study are presented. A conclusion is made about the possibility of replacing channel technical carbon K354 with furnace black carbon N121 oxidized with 30% hydrogen peroxide.


2020 ◽  
Vol 39 (1) ◽  
pp. 81-90
Author(s):  
An Zhao ◽  
Xuan-Yu Shi ◽  
Shi-Hao Sun ◽  
Hai-Mo Zhang ◽  
Min Zuo ◽  
...  

1979 ◽  
Vol 52 (2) ◽  
pp. 294-303 ◽  
Author(s):  
R. Caspary ◽  
P. Kretschmer

Abstract The dependence of the Index of Elasticity, E, the reciprocal value of sound velocity, on temperature and pressure is related to specific volume and compressibility of rubbers. The sensitivity of E towards changes of temperature and pressure was calculated, indicating a new versatile possibility for the control of rubber extruders. To confirm this, extruder experiments were carried out with an SHR compound, of which a working diagram was established showing the complete behavior of E=f(p,T). The effect of compound composition, especially of plasticizer and carbon black content, was examined. Viscosity in the extruder primarily determines changes in E. The method was shown to be applicable up to a die diameter of at least 200 mm. The method may also be applied to follow degradation of rubber compounds during mastication.


Sign in / Sign up

Export Citation Format

Share Document