Kinetic Study of Oxidative Scission in Natural Rubber by Wallace Plasticity Measurements

1992 ◽  
Vol 65 (1) ◽  
pp. 1-6 ◽  
Author(s):  
L. H. Gan ◽  
S. C. Ng ◽  
K. K. Chee

Abstract The kinetics of thermal oxidative degradation of natural rubber (NR) have been studied by Wallace plasticity measurements. On the basis of the Kotliar's model of random chain scission, an expression was derived to interpret the kinetic data collected over a range of temperatures from 80 to 160°C. It has been shown that the kinetic parameter resulting from the present analysis, indeed refers to a diffusion-controlled reaction with an overall activation energy estimated to be 135 ± 6 kJ · mol−1. In addition, the implications of plasticity retention index, which measures the oxidizability of NR, are discussed.

2015 ◽  
Vol 69 (7) ◽  
Author(s):  
Mian-Ran Chao ◽  
Wei-Min Li ◽  
Li-Li Zhu ◽  
Hai-Hong Ma ◽  
Xiao-Bo Wang

AbstractAn oil-soluble antioxidant, alkylated diphenylamine (ADPA), was prepared by alkylation of diphenylamine. The influence of ADPA on the thermal-oxidative stability of poly-α-olefin (PAO8) was evaluated by thermogravimetry (TG). For comparison, the thermal-oxidative stability of PAO8 with zinc dialkyl dithiophosphate (ZDDP) was also investigated. Activation energy (E


2011 ◽  
Vol 47 (1) ◽  
pp. 63-72 ◽  
Author(s):  
J.H. Yao ◽  
X.H. Li ◽  
Y.W. Li

In this study, changes in physicochemical properties and leachability of indium from mechanically activated hard zinc residue by planetary mill were investigated. The results showed that mechanical activation increased specific surface area, reaction activity of hard zinc residue, and decreased its particle size, which had a positive effect on indium extraction from hard zinc residue in hydrochloric acid solution. Kinetics of indium leaching from unmilled and activated hard zinc residue were also investigated, respectively. It was found that temperature had an obvious effect on indium leaching rate. Two different kinetic models corresponding to reactions which are diffusion controlled, [1-(1- x)1/3]2=kt and (1-2x/3)-(1-x)2/3=kt were used to describe the kinetics of indium leaching from unmilled sample and activated sample, respectively. Their activation energies were determined to be 17.89 kJ/mol (umilled) and 11.65 kJ/mol (activated) within the temperature range of 30?C to 90?C, which is characteristic for a diffusion controlled process. The values of activation energy demonstrated that the leaching reaction of indium became less sensitive to temperature after hard zinc residue mechanically activated by planetary mill.


2003 ◽  
Vol 76 (2) ◽  
pp. 334-347 ◽  
Author(s):  
Tarek M. Madkour ◽  
Rasha A. Azzam

Abstract Stress-strain measurements were performed on dry and swollen natural rubber vulcanizates prepared using both sulfur as the crosslinking agent and aromatic-based bound antioxidants acting as a second crosslinking agent. The aromatic-based antioxidants were synthesized and analyzed spectroscopically in order to relate the final behavior of the vulcanizates to the nature of the crosslink characteristics. The anomalous upturn in the modulus values of these networks in response to the imposed stress was shown to persist in the dry as well as the swollen state. Since the swollen elastomeric chains cannot undergo a strain-induced crystallization, the abnormal upturns in the modulus values in an absence of a filler were explained on the basis of the limited extensibility of the short chains of networks prepared using two different crosslinking agents in line with earlier modeling predictions. Remarkably, the swelling experiments revealed the increase in the crosslink density of the networks in the early stages of the thermal oxidative degradation procedure indicating a post-cure of the chemically bound antioxidants to the elastomeric chains, which incidentally corresponds to a maximum in the modulus values of the networks. The rheological and other mechanical properties such as the hardness were shown not to have been affected as a result of the incorporation of the chemically bound antioxidants.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1015
Author(s):  
Jun Wang ◽  
Chen Wei ◽  
Haoxue Yang ◽  
Tong Guo ◽  
Tingting Xu ◽  
...  

The phase transformation kinetics of a face-centered-cubic (FCC) Al0.25CoCrFeNi high-entropy alloy during isochronal heating is investigated by thermal dilation experiment. The phase transformed volume fraction is determined from the thermal expansion curve, and results show that the phase transition is controlled by diffusion controlled nucleation-growth mechanism. The kinetic parameters, activation energy and kinetic exponent are determined based on Kissinger–Akahira–Sunose (KAS) and Johnson–Mehl–Avrami (JMA) method, respectively. The activation energy and kinetic exponent determined are almost constant, indicating a stable and slow speed of phase transition in the FCC Al0.25CoCrFeNi high-entropy alloy. During the main transformation process, the kinetic exponent shows that the phase transition is diffusion controlled process without nucleation during the transformation.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
H. Mehranpour ◽  
M. Askari ◽  
M. Sasani Ghamsari ◽  
H. Farzalibeik

Titanium dioxide nanopowders were synthesized by the diffusion controlled sol-gel process (LaMer model) and characterized by DTA-TG, XRD, and SEM. The preparedTiO2nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks on the base of Avrami equation. The stating point of anatase-rutile phase transformation temperature in the prepared nanoparticles was found between 100 and200°C. A decreasing trend on the intensity of X-ray peaks of anatase phase was observed up to600°Cwhen the presence of the rutile phase became predominant. Results indicated that the transition kinetics of the diffusion controlled prepared nanoparticles was begun at low temperature, and it can be concluded that the nucleation and growth sites in these particles were more than other. However, it has been found that the nucleation activation energy of rutile phase was 20 kj/mol, and it is the lowest reported activation energy.


2002 ◽  
Vol 76 (3) ◽  
pp. 401-409 ◽  
Author(s):  
Bo Wu ◽  
Yu-Zhong Wang ◽  
Xiu-Li Wang ◽  
Ke-Ke Yang ◽  
Yong-Dong Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document